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communication in both object-oriented and non-object-

.Introduction oriented environments.
We also recognize that our architecture must be

scalable to accommodate large user and service
The objectives of the High Performance Distributed populations. As military networking expands to provide

Systems Architecture (HPDSA) project are to near-universal connectivity, the range of services that

integrate very high bandwidth networks with users of the network require will also expand. In
particular, we expect that there will be increasinp

• heterogeneous computer architectures (includine, information flow across service boundaries to supptrn C
parallel and specialized processors) and operations, and it is critical that the HPDSA support and

* support multiple programming models with this not hinder that expansion. Therefore, the facilities
system. incorporated in the architecture are designed for efficient

large-scale operation (e.g.. thousands to millions ot
The driving forces for this project are user demands for hosts) to accommodate this expansion.
hivh-performance computing coupled with the Finally. we accept as a goal that the HPDSA must
a lability of gigabit and high bandwidth networking. be as simple and easy to understand as possible. While
C.. .nmand and control applications are increasingly high-performance operation is a requirement of this
requiring the capabilities of both specialized processors effort. it should not come at the cost of increased
and supercomputer-class machines. These resources are complexity for the programmer or the user. The
often concentrated at computer centers while the data proirammner should be able to use natural abstractions in
sources and users of these systems are geographicall, applications and to apply criteria to those abstractions it)
distributed. By linking users, data sources, and systems achieve high performance-
together with high-speed networks and distributed During the course of this project, we have designed
operating systems. we can substantially improve the a distributed system called Photon that attempts to satis-
quality of command and control information and provide It the above goat,. The d&sign is optimized to work in
that information to more people. environments where the ratio ot communications latency

A high -performance distributed operating system to computational power and bandwidth is relatively high
must satisfy a number of degsin goals to accomplish oui c.'ompared to what it is today. In other words, it antici-
architectural obiectives. Foremost. it must be calable o, pates improvements in communications bandwidth and
accommodating a wide variety of computers. neii, 01k,. computational power, but a,,sumes speed of light will not
and programming languages. The performance demands improve.' This assumption implies that the architecture
and diversity of missions in C- environments require a of the system must be able to accommodate greater par-
heterogeneous computing and communications allelism and less direct feedback from remote locations
environment. This heterogeneous environment consists in achieve high performance
not only of general-purpose computers. but ailso Photon has incorporated a few key mechanisms to
supercomputers. parallel processors. graphics renderers. accommodate high-latencv environments. One of these
diital signal processors,. and other spcciah/kd i, globally-claimable future, iaso referred to as global
platforns. Each platform provides specialized resources futures). Futures [Halstead Multilik;p] define points in a
to the computing environment, but the applications using program where parallelism can be used while simulta-
these distributed resources require that they operate ais a 1 eously specifying a result that w-ill force synchroniza-
unified and consistent whole. A distributed architecture tion between the caller and the called function. Global-
that provides a uniform programming model over a wide ly-claimable futures allow this abstracted result to be
range of computing platlorms and applications can passed to other computers on the network, where they
achieve this goal. can be claimed by other programs requiring the data.

The objcct-oriented programming model provides a These globally claimable futures permit the data to flo%%
framework for such a system. It allows users to ha'e a directly to the programs where the results are used rather
consistent view of all services, while insulating the user than conforming to an artificial client/server distinction.
from the implementation details of those services. TFills This fact eliminates needless '*round-trips" and thereby
enforcement of modularity and the separaion 01f polh:; expedites program execution in high-latency environ-
and mechanism make the obje t model a powerful way ments.
to build large-scale. distributed applications. Therefore. Globally-claimable futures allow programs to c\-
support for the object model is an important goal in the plicitly declare their data dependencies and to implicilly
HPDSA. define available parallelism. However. without proper

Nonetheless, we recognize that there are many integration into the programming environment, the con-
applications that do not naturally fit into this model. cept of globally-claimable fulures would be difficult to
This class of applications includes equation solvers. text
searching algortthms, and demand-driven shared- 1. Should the speed of light Increase at all, the system woutd tal
memory systems. Theretfore. our goal of supporting an ftiiinclon. but would probably benefit from redesign along v. 1l1b

object-oriented system must permit high-performrance many of the physical sciences.



use and manage. To achieve this integration, we borrow lowing project documents:
a concept previously used in the Argus system [Liskov
Argus] called language veneers. Language veneers per- * Technical Report #7707, System/Subsystem Speci-
mit the basic functions of a d'stributed system to be in- fication for Photon, A High-Performance Distribut-
corporated into a high-level language through small svn- ed Systems Architecture. Jan. 1992.
tactic additions to the language. These additions are tai- * Technical Report #7708. Software Design Docu-
lored to the style and flavor of the language to provide ment for Photon. A High-Perforrmance Distributed
the most natural interfaces to the functions provided by System Architecture. Feb. 1992.
the underlying system. In our case, we concentrated on * Technical Report #7709, Photon Software User's
defining a language veneer for the language C++. which Manual, Feb. 1992.
allows us to mate an object-oriented programming lan-
guage with an underlying object-oriented distributed svs- This document builds upon research reported upon in
tem. This veneer permits C++ objects and operations to our Technical Report #7619. High-Performance Distrib-
map onto corresponding distributed objects and opera- uted Systems Architecture Interim Technical Informa-
tions. Our veneer permits the programmer to use a very lion Report released June 1991. Thai rex"ort described
natural and sequential programming style while actuallý the issues and background that we believed to be the
invoking futures and data-flow mechanisms. The result driving forces behind this project. We have included
of this is that distributed programming in Photon can re- portions of that prior work in this report for the sake of
semble nat -d C++ programming. completeness and convenience to the reader. This report

To prove that these mechanisms can promote high supersedes the prior interim report and attempts to sum-
performance distributed applications, we wrote a series marize the entire project effort.
of demonstration programs using prototype implementa-
tions of these mechanisms. These ranged from simple
echo programs to parallel computations of the Mandel-
brot set. The language veneer was demonstrated b\
writing a set of class definitions that allowed construc-
tion of very simple distributed programs through normal
C++ object definitions and references. While each ol
these demonstrations was hand-coded to demonstrate a
specific aspect of Photon. all of these demonstrations
make use of library functions that implement the basic
Photon concepts rather than an external "kernel". By
embodying Photon mechanisms within the user pro-
gram's address space. context-switching time within a
computing platform is eliminated, and no one proccs.
becomes a bottleneck when multiple processors are used
in parallel.

These demonstrations are a tirst step in the develop-
ment of a distributed programming environment capable
of exploiting gigabit networks, parallel processors. and
multiple programming models, We believe that they. in-
troduce new concepts to work around fundamental phyw-
ical limits to the speed of distributed applications. As
processor and networking technologies evolve through
the end of the twentieth century. we believe that con-
cepts like these will play an increasingly important role
in defining distributed applications.

1.1. Document Overview

This document describes the environment, issues,
and mechanisms involved in the design of Photon, our
high performance distributed systems architecture.
While it attempts to provide a broad overview of the ar-
chilecture and tie problems it attempts to solve, it does
not present all elements of the desin in depth. To avoid
unnecessary duplication, we refer readers wishing to un-
derstand the design in greater technical detail to the fol-
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servative estimate.2
It is important to ask ourselves if we believe this to

2. High-Performance Computing and be reasonable growth. Certainly, there is no natural law
Network Environment that guarantees the computing community exponential

increases in speed. In fact, any technology curve actual-
The computing environment of the 1990s is the key ly is more like an S curve, as shown in Figure 2. Theec-

driving force for the HPDSA. Advances in computer ar- fore. we have reason to be skeptical of c.ontinuud expl,-
chitecture, computer networking, and systems integra- nential growth. Presently, however, there do not appear
tion lead one to believe that existing distributed comput- to be any significant obstacles to achieving the perfor-
ing techniques will be scalable to an environment con- mance shown in Figure 1. The technology used involve,
sisting of gigabit networks, teraflop mainframes, and shrinking the minimum line size of the chips, reducing
ubiquitous access by users, While these techniques may the voltages used on the chips to increase clock rate, and
work, there are constraints imposed by physics that will executing multiple instructions per cycle to achieve fine-
limit the performance of traditional techniques, and will grained parallelism. While these achievements are sig-
require us to consider significant changes in distributed nificant, they are fairly straightforward from an engi-
architectures. neering point of view, and they can leverage off existing

Certainly the most visible advances in computer designs in supercomputers. Furthermore, we have ex-
systems technology have been in microprocessor speed. trapolated only the performance numbers for CMOS in-
We can get a sense of this advance by examining the tegrated processors. If we permit the use of more exotic
speeds of single-processor workstations and using them processes such as ECL and gallium arsenide, we can
as indicators for computing in general, In 1985, the even increase these estimates. However. CMOS will
68020 had just been introduced, and this was the first continue to be the mainstream technolog: oto the fore-
32-bit microprocessor system actually delivering more seeable future, and therefore it provides a convenient
than 1 MIPS in an inexpensive workstation (Sun 3150). lower bound.
Today. the HP Apollo series 700, the IBM RS 6000. and Perhaps the most significant issue not shown in
the Sun SPARCstation 2 all deliver in excess of 20 Fi2ure I is that of word size. At present, one of the dif-
MIPS and some as high as 76 MIPS. The outstandine ferentiating factors between supercomputers and main-
question is. can the microprocessor designers and semi- frames is that most supercomputers are considered
conductor houses continue this improvement over the "true" 64-bit machines, whereas mainframes still use 32
next five years? bits for almost all integer and addressing operations.

All evidence currently indicates that not only can However, as companies like Digital Equipment Corpora-
they continue to improve at this rate. but the rate ot ini- tion and MIPS Inc. introduce chips >. ch as the Alpha
provement could accelerate. The largest contributing and M4000 respectively, this distinction will begin to
factor to this acceleration is Reduced Instruction Set vanish. In all likelihood, this change will be as signifi-
Computer (RISC) technology. RISC technology has two cant as the jump from 16 bits to 32 bits was in the 1970s.
simplifying characteristics: the basic functions of the and it will dramatically affect the way programs are
system are small and simple. and hard problems to solxe written and run, just as 32-bit processors did in the
in silicon can be pushed off into software. making the 1980s.
chiips simpler yet Simpler chips make it possible to pro- At present, we expect the jump to 64 bits in work-
duce working systems faster, and this, in turn, results in station class machines to occur souietime between 1992
faster systems sooner. and 1993. Not many systems other than parallel proces.

Figure 1 shows the basic processor speeds for each sors are feeling a need for 64-bit address spaces at
year beginning in 1985. and a rough projection of this present. Nonetheless, based upon technology announce-
trend through 1995. Several representative processor ments such as the DEC Alpha architecture, we can ex-
families, including the Motorola 680x0 and 880x0, and pect all competitive workstation microprocessors to be
Intel 80x86, are shown in this graph, along with prc jcc- 64-bit by 1995. and that no significant new systems ex-
tions made by Prof. John Hennessy of MIPS Computer cept for personal computers will be designed around 32-
Systems and R. Andrew Heller ot the IBM workstation bit processors beginning then. Because of the installed
division [Microprocessor Report]. An analysis of this base of 32-bit processors, this change implies that
data shows that we have been seeing performance in- throughout the 1990s. distributed systems will have to
creases of approximately a factor of 1.85 per year for the -
past five years, and this appears to be a conservative fac- 2. Actually, these numbers already appear excessively conserva-
tor for the next five. This implies that we will have live. BBN's estimate was for 40 MIPS in 1991, and HP has
chips in 1995 that compute more than 450 MIPS. Equal- nearly doubled that with its series 700 model 750 at 76 MIPS.
ly impressive is the prediction of more than 130 MIPS in Intel's David House has publicly stated that the Intel P5/80586
1993, Comparing these estimates with what semicon- architecture will offer performance in the 100 MIPS range in
ductor companies believe they are designing. these num- 1992 lEE Times], Digital Equipment has announced their
bers are quite reasonable and can be considered a con- Alpha chip should result in workstations running at 150 Spec-

marks in 1992 and achicevng -100 MIPS soon after.
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Figure 1: Projected Microprocessor Performance in MIPS

support both 32-bit and 64-bit architectures. It also mi- are involved.
plies that distributed systems will become increasingly Because of the diverse characteristics of WAN and
heterogeneous with regard to word size as well as in- LAIN technologies, the most successful large-scale
struction set. communications strategies have been combinations of

Compared with computer systems. communications the two. The premiere example of such a combination is
technology has been relatively simple to evaluate until the Defense Research Internet. In the Internet, local
the last few years. Communications bandwidth cost and communication usually takes place over a LAN. Since
performance were inversely proportional to the distance the vast majority of data sent on a network tends to be
over which the communication occurred. This resulted addressed to local users, the high bandwidth of the LAN
in local area networks having the highest bandwidths is used to provide low-cost transmission whenever
and the lowest cost per bit transmitted, and wide-area possible. Data to be transmitted to areas not served by
networks having the lowest bandwidths and the highest the LAN is sent by a gateway onto one or more
cost per bit transmitted. intermediary networks. The data only travels as high in

This relationship can be seen easily by comparing the hierarchy of networks as is necessary for it to be
Ethernet, as an example of current local area network transmitted to its destination. This permits expensive.
(LAN) technology, with the Terresurial Wideband Net- long-iiaul networks to be used only -1,-n long-haul
work, an example of wide area network (WAN) technol- communication is required. The Internet thereby makes
ogy. Ethernet provides a peak bandwidth of around 10 efficient use of the pricing and bandwidth characteristics
Mbits/sec and can provide communications over a dis- of both LANs and WANs for achieving global
tance up to around I mile. Worst-case transmission communications.
latency is on the order of tens of microseconds to any In the 1990s, this formula relating bandwidth.
point on the Ethernet. The TWBNet, on the other hand, coverage, and communications cost is likely to become
provides peak bandwidths of 144 Mbit/sec, but can obsolete and thereby change our ways of thinking about
provide national and international communication. How- communications networks, at least within the continental
ever, worst-case transmission latency is also worse, United States. The technology driving this change is the
reaching values of 250 milliseconds when satellite links deployment of large amounts of fiber-optic cable by the

-4-
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regional, national, and international phone companie,;. Boston and California that have 4000 lanes, but with a
To date, most of this deployment has taken place strictly enforced 55-mile-per-hour speed limit. While
between switching offices of the telephone companies, these roads can handle significantly more cars than ones
and therefore has been largelV invisible to tht' with four lanes, this increase in capacity does not change
communications consumer. However, the technology is the time it takes to get from one coast to the other.
now becoming visible in the form of new services such While these best-case latency numbers are very
as SONET and BISDN. which are available to alnot good. they are within an order of magnitude of the laten-
any subscriber with the need for high-bandwidth corn- cies we are experiencing on wide area networks today.
munication. National and world-wide packet network-, Therefore, while wide area bandwidths are going to im-
such as the NREN and DARTNET are providing peak prove by almost three orders of magnitude (1.44
access bandwidths of between I and 45 Mbits/sec. today Mbits/sec to I Gbit/sec). cross-country latencies can at
and will reach gigabit speeds within the decade. most improve one order of magnitude (250 milliseconds

One aspect of WAN communications that will not to 14 milliseconds. one way). Therefore, the ways we
improve as significantly as it has in the past is latency. use our networks will have to change qualitatively to
the time it takes for a message to travel from one point to achieve performance improvements proportional to the
another. In the past, network vendors have been able to increase in bandwidth. Distributed systems in particular
improve latency by using higher bit rates for network will have to recognize the latency constraints inherent in
host interfaces and techniques such as cut throuch ' in WANs and incorporate facilities to mitigate their effects
packet switches. However. no matter what improve- on programmers and applications.
ments in technology occur, network latency will be fun-
damentally constrained by the time it takes light to travel
between those two points, While use of fiber-optic tech-
nology may permit sending bits at a rate in excess of I
Gigabit/sec from Boston to Los Angeles, those bits can-
not arrive in Los Angeles any sooner than 14 millisec-
onds after they are sent (assuming a 2500 mile. straight-
line, fiber link between Boston and Los Angeles). Fur-
thermore, we cannot expect to receive an answer from
Los Angeles any sooner than 28 milliseconds after we
send the question from Boston. A way to think about
this constraint is to imagine interstate highways between

3. Cut through is a technique where a packet-switch can begin
transmitting a received packet as soon as it has read its header
and knows where it should direct it. In essence, this allows the
packet to begin transmission along a new link before it hl's
been fully received on a previou, one, thereby reducing latenct
due to the intervening packet switch,
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Figure 3: Technology Validation Experiment Application Schema and Application Characteristics

with a basis for evaluating the features of our design3. Discussion after it is complete.

3.1,.Example Applications 3.1.1. Technology Validation Experiment (TVE)

We chose to evaluate a small group of distributed The first application we considered was the Tech-applications before we started our HPDSA design. We nology Validation Experiment or TVE rSchroder
believe these applications to be typical of classes of TVEI[Schroder TVE2i. This application was based
problems solved by distributed systems. We did this to upon a collection of programs written by MITRE to si-
provide a firm technical foundation for design decisions ulate the detection. tracking. and weapon engagement of
and t,• ground our architecture in the needs of real world missile threats during their boost phase. The distributedsystems. By determining the architectural and perfor- version of the system was created using Cronus [Schanti
mance needs of these applications, we can extrapolate Cronus/ to validate its ability to incorporate existing
those needs into the a list of requirements for our code in a distributed environment.
irPDSA. Furthermore, these applications provide us
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Figure 4: Mandelbrot Set Computation Schema and Application Characteristics

The overall TVE s~mulation system consists ot The communication is simple, point-to-point, and one-
thrce major sections: threat generation components. way: and no signifi..ant use is made of objects below the
simulation components. and a display subsystem for module level.
monitoring the results of the experiment. The threat In many ways. these characteristics are typical of a
generation computes trajectories and orbital propagation straightforward data-flow application. Each specialized
for a collection of simulated attacking missiles. The module waits until it has the data it needs. Once a mod-
simulation components then generate sensor data based ule's inputs have been supplied, it performs a computa-
upon these trajectories, filter that data, evaluate feasihili. tion. sends the output of that computation on to the next
ty of intercept by orbiting weapon assets. and perform module. and waits for more input. All synchronization
weapon assignments. The display system presents the and flow control is provided by the distributed system~s
th. - ts and the results of the simulation to the user of the communications mechaiiism, and the longest path
system. A simplified diagram of the application and the through the system sets, an upper bound on how respon-
application's attributes are shown in Figure 3. sive the system can be.

The WYE exhibits several interesting characteristics
*with regard to the underlying distributed architecture, In) 3.1.2. Mandelbrot Set Computation

essence. this application has been decomposed by func-
tion, and each function has been placed in a separate The second application we looked at was the corn-
module. The distributed system provides cotinmunica- putation of the Mandelbrot Set by a collection of corn-
tion and synchronization among those modules. hut this puters. This computation is basically the classification
is largely limited to data translation and flow control. ot points in the complex plane into categories of conve'-
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gence or divergence based upon successive evaluation of threat assessors, but this flot is mediated by a common
a function. This classification of the entire complex data structure or blhikho•id. Multiple threat a.s',essmnlt
plane is computationally expensive, but this computation computations occur simultaneously. and these provide
can be run in parallel easily because the classification of dynaamic load balancing. Finally. the application cani
each point is independent of that of all other points in the make use of any number of sensor and threat assessment
plane. processes wiihtut modification and has some inherent

This example is representative of parallel process- fault-tolerance. Should a threat assessor or ;ensor fail.
ing applications programmed using a task bag model only data associated with that module with be lost, and
(see Figure 4). The basic concept is that there are one or all other computations will be able to continue.
more processes that create descriptions of work to do. Of particular interest in this application is the fact
and those descriptions are then placed in a heap or ta,•k that the input and assessment processes are onl, loosCl\
bag. At the same time there are several compute server coupled. The sensor processes store data in the black-
processes that request work descriptions from the task board as it becomes available, without regard for wheth-
bag, perform the computation described, and return a re- er the previous data has been read yet or not. Similarly,
suit. The results are then collected and displayed. usual- each threat assessment process acts upon the available
iy by the process that initiated the computation, threat information to determine the best target at this

One interesting aspect of this application is that 'it moment, without regard for explicit synchronization. Al-
uses multiple computation servers that are identical in though it is drastically simplified, this model is typical of
function. The number of computation servers available real-time systems that must be able to function in spite
is not significant to the application' it will run properly of possible ".input overload" scenarios. Therefore. we
with one computation server or one hundred. By struc- must ensure that our system be able to support loohsly-
turing the application to use this task bag model, the ob- coupled as well as explicit synchronization techniques,
ject code becomes independent of the number of proces- While it may not be readily apparent. this applica-
sors used to run it. tion is representative of a larger group of systems such

Furthermore, provided the number of points to be as shared workspace or conferencing applications. We
classified is large, the computational load is automatical- mention these systems because they have broad applica-
ly balanced across all these processors regardless of their lion within military command and control environmenLs.
relative speeds. Slower processors will request newk They differ because people represent the sensors and
work relatively slowly while fast processors will request threat assessors in coniferencing and shared workspace
work more frequently. This behavior maximizes use of systems while the pilotfs associate application uses auto-
all computation servers available to the computation and mated subsystems in those areas. Nonetheless, the is-
provides maximum throughput. sues of noncentrali7ed control, loose synchronization.

For extremely large computations such as factorine and shared workspace are common between the two ap-
many-digit composite numbers, the user may want to use plication areas. We believe that by addressing the issues
hundreds or thousands of computation servers. This raised by the pilot's associate, the 1-PDSA should bc ca-
need introduces a requirement that the computational pable of supporting a wide range of blacktbxard and
node with the task bag be able to communicate with hun- sharcd-workspace systems. including electronic confer-
dreds or thousands of other machines simultaneously. encing.
Aiternatively, the task queue may have to be distributed
across several processes to avoid communication and 3.1.4. Advanced Simulati,"n
processing bottlenecks.

Our fourth distributed application is based upon
3.1.3. Pilot'S Associate battlefield simulations such as those implemented in the

DARPA Advanced Simulation Program. In this type of
This application is a theoretical collection of pro- simulation. each vehicle on the battlefield is simulated

grams that assist a pilot in threat identification and by a separate computer on the network. Each vehicle
weapons targeting. The model used is one where many simulator broadcasts a packet describing its position and
sensors provide information regarding possible threats appearance to all other simulators periodically. Every
around an aircraft. As information regarding these pos- vehicle simulator is responsible for modeling its behav.
sible threats arrves, the information is posted in a corn- ior and its interactions with other vehicles by listening to
mon data structure. Multiple threat assessment process- all the broadcast packets from other simulalors. If a sun-
es examine the information posted in this database asyn- utlator does not hear a new position and appcararce
chronously to determine which threats are most danger- packet from another simulator it is interacting with. it
ous to the aircraft, and these threats are identified to the extrapolates the remote machinc's appearance and posi-
pilot for action, The schema for this application is shown tion from the last data it had: therefore, the system toler-
in Figure 5, ates unreliable communication. Furthermore. to enhance

In many ways, this application is a synthesis of the realism, should a simulator fail during a simulation. an-
first two. Data is still flowing from sensor processes to otiler simulator will repeat its state and appearance pack-
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Figure 5: Pilot's Associate Computation Schema

ets until the simulator comes back on line. A compula- qutres the use of timely broadcast or multicast communi-
tional schema is shown in Figure 6. cation. While it can tolerate unreliable distribution, the

This simulation application is an object-oriented en- structure of the system demands that every simulator
vironment where the objects correspond one-to-one with hear most packets sent by all other simulators and that
the computational nodes of the network. It is similar to all packets be delivered within a fixed time period re-
the blackboard-based pilot's associate application be- ferred to as a simulation frame. This requirement differ-
cause of the loose coupling between the various simula- entiates the system from many other applications and re-
tors. However, unlike the pilot's associate. the central quires support for this timely delivery from the underly-
blackboard is distributed throughout the network. All ing distributed operating system.
simulators maintain their own view of the state of the
world and update it according to broadcast packets from
other simulators.

This application also differs from the previous ap-
plications because it attempts to provide object persis-
tence even when the simulator representing a specific
object fails. Therefore. while objects are usually
mapped one-to-one to simulators. that mapping can
change as the result ,of failures.

One final aspect that is significantly different in this
application is its use of comniunicalion. This systcen re-
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and some (such as advanced simulation or real-Lime vid-
eoconferencing) may be degraded by latency variatioins4. Issues and retransmissions implied by this type of deliver).
The distributed architecture must be able to accommo-

Based upon our studies of these applications, we date the specific communications needs of applications
constructed a list of issues that we believe must be ad- without overloading them with unneeded communica-
dressed by the HPDSA. These issues are presented in tions features.
the forms of questions that features of the architecture
should address. These issues are grouped into the fol- How does the user specify the communications needi of
lowing areas. the apphlcation? Given that the architecture must be

able to satisfy the application's needs, how does the ap-
* Communications plication specify those needs to the system? Distrbuted
* Computation applications are often insulated from the communica-
* Binding tions medium, and therefore have had little opportunit%
• Naming to control their communications environment.
• Fault-tolerance and correctness
* Resource Allocation Hlow do we provide conmmunications to many objects at

once? In many systems. there are limits to the number
Each area will be discussed separately in the following of communication paths or x r-za! circuits that can be
sections. open simultaneously. This type of restriction should not

be made visible to the applications programmer. The
4.1. Communications user should be able to worklwith as many or as few ob-

jects as are required by the application, and the distribut-
Our sample applications demonstrated a wide range ed operating system should support that use without bur-

of communications needs. Next-generation. high-band- dening the programmer wvith excessive communications
width networks will also dramatically change the charac- bookkeeping.
ter of the infrastructure that must service those needs. In some communications environments, multicast
Therefore. our architecture should address the followinc_ facilities may be available. The use of multicast proto-
communications issues. cols can substantially reduce communications cost in

these environments and can greatly improve the scalabil-
How do we deal with proportionally greater cofnliftll(- ity of the system. However. because not all environ-
cations latency? As we described in section 2. the next- ments support multicast communication, the system
generation of computer networks will have proportional- must be able to make intelligent decisions regarding
ly greater latency than networks of today. In other when multicast protocols can be used.
words, their latency will not improve nearly as dramati-
cally as their bandwidth will. Our new architecture must How do communications abstractions interact with the
recognize this qualitative change in network characteris- object-oriented progranintnn, nwdel? Most object-ohn-
tics and provide mechanisms for mitigating its effects. ented programming languages do not incorporate the

concept of a communications model because all object
How do we model scheduled versus unscheduled coin- interactions are contained within one process and are
munications (e.g.. connection-based models versus data- perfectly reliable. When we start locating objects at
gram models)? To date, most distributed applications other nodes of the network, we must add concepts of
have been designed for specific networking substrates. communications errors and failure into the object model.
and have not tried to negotiate their communication
needs with the communications system. Next-genera- 4.2.Computation
tion applications will make specific demands of the com-
munications infrastructure, such as low delay, best-effort Because we must support parallel as well as distrib-
delivery, and reliable delivery and sequencing. Some of uted platforms in our architecture. we must clearly de-
these demands will be known in advance (i.e.. we'll fine a model of computation that includes parallelism.
know the needs are there when we design the applica- Arriving at this model of computation requires that we
tion), while others may not be known until the applica- address the following issues.
tion is run. We require facilities within the HPDSA for
the application to declare its communications needs. The How do we express parallehsm in a distributed applica-
distributed system will then map those needs onto the lion? Compute-intensive distributed applications may
available communications protocols and interfaces, improve their performance significantly by running parts

of the computation in parallel. However, traditional se-
What choice of corniunication semantics must be' pro. quential languages with synchronous Remote Procedure
vided (e-g., reliable delivery, rapid delivery, sequenced Call (RPC) models provide no opportunity to express
delivery)? Not all applications require reliable delivery.
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-ýis parallelism. The distributed system architecture ties, particularly to preserve ordering of operations, reli-
must provide ways for the application to relax its se- able transmission, and error detection, and reporting.
quencing and to express its parallelism to make maxi- However, the maintenance of a connection raises the fol-
mum use of multiple processors in the distributed envi- lowing issues.
ronment.

How do we create bindings between clients and servers?
How do we bind our parallelism abstractions to real If we wish to provide specific classes of service to an ap-
computational elements to marimize the performance of plication (for example, we wish to be able to guarantee
the computation? The specification of parallelism by the ordered, reliable delivery for all operations on a specific
application should be based upon the structure and se- object), the distributed system must provide ways for the
quencing requirements of the computation. However. client and server to maintain state concerning their corn-
this expression of parallelism may result in significantly munication. This state information might include what
more computations that are able to run in parallel than operations are outstanding, which operations have corn-
we have processors to actually run them. For example, pleted. and what types of exceptions might be pending.
the computation of the product of two 1OOx 100 matrices In essence, this maintenance of state at each end of the
can be divided into 10,000 independent computations. communication path defines a communications connec-
However, it is not likely we'd have available (or want to tion or binding between the two entities. Since we de-
pay for) 10,000 separate processors to perform this com- sire that applications be able to specify performance and
putation. Therefore, the distributed system must provide delivery requirements for their communications channels
mechanisms for mapping abstract parallelism to real (as noted in the communications section above), the dis-
computational elements in ways that optimize perfor- tributed system must have the ability to set up bindings
mance, cost, or other parameters. between clients and servers as necessary to fulfill those

requirements.
How do we express data dependencies within a distribut-
ed application? Once we have established methods of At what time are these bindings created? The existence
defining parallelism, we must ensure the correctness of of client-server bindings implies that they are created at
the computation, regardless of the amount of parallelism some time and destroyed at another. While simple, stat-
being used. Traditionally, this is managed by the pro- ic bindings might be acceptable for some applications.
grammer by writing his or her program in serial fashion. parallel applications (such as the Mandelbrot Set Corn-
with the assumption that every statement cannot proceed putation) may require a more dynamic. unscheduled type
until the previous statement has finished. If we are of binding to perform load balancing. Furthermore,
going to be able to exploit arbitrary parallelism within a bindings must be dynamic enough to cope with server or
distributed system, the distributed system needs to know network failures: should a server fail. the system may
what dependencies are required for correct operation and need to establish a new binding to a backup server.
what statements are independent from one another.

How long do these bindings last? While bindings are
How do our computational abstractions synchronize useful when there are many operations being performed
with one another? Once we've provided parallelism ab- on a single object, they stop being useful when all opera-
stractions within our distributed application, we must tions on an object are completed. Furthermore, there is a
also provide ways for those computational abstractions cost to keeping unneeded bindings because they require
to work together to provide consistent and deterministic storage of state in both the client and server. Therefore.
results. In our matrix multiplication example, we would the distributed system requires mechanisms for eliminat-
not want to print out the product matrix until we were ing bindings once their usefulness is over.
confident that the computation of all 10,000 elements of
the matrix had finished. Similarly, we would not want to 4.4. Naming
update a record of a database at the same time that it was
being written by an independent process. These syn- How do we name objects and services? Distributed ap-
chronization methods must work in both distributed and plications need ways to refer to objects and services with
parallel contexts and must be efficient enough that they which they may not have communicated previously. A
do not significantly alter the overall performance of the convenient way of permitting this reference is to attach
application, names to those objects and to allow those names to be

stored in messages and catalogs among the components
4.3. Binding of the system. The distributed system should provide a

naming architecture for objects and to provide ways of
A distributed system must permit servers and cli- deriving addresses for objects from their names.

ents to communicate. While these communications fa-
cilities might be completely unstructured, it is useful to How do we map descriptive requirements (names, prop-
maintain some sense of connection between the two enti- erties, keywords) to servers? While hierarchical names

-12-



are one method of locating objects, some applications ing of that instance of shared data. Object-oriented pro-
may need to reference servers based on other criteria gidmming models integrate both types of access by sup-
such as distance, available bandwidth to the server, ad- plying procedures for operations upon objcts and pub-
ministrative domain, and so on. While these properties licly defining the data types involved in those opera-
can be expressed in a hierarchical name space. the con- tions.
cept of locating objects based upon properties is more
akin to a database lookup by attribute than to a name How is this computation model integrated into the pro-
lookup. Therefore, a distributed system may need to gramming language? The mechanisms defined by the
provide ways of locating servers and services other than underlying distributed system must be presented to the
just by name. programmer as part of the language being used to build

the application. Providing only one version of these
What format and scope does an object name have? Ob- mechanisms for all languages is difficult because not all
ject names need to be manipulated by both people and programming languages work from a common set of as-
computers. While variable-size, alphanumeric names sumptions. For example, a procedural interface to the
such as /!ny/favorite/files may be convenient for distributed system's mechanisms would not be easy to
people to remember, they are cumbersome to use if they use in a strictly functional programming language. Sir-
are the only way of communicating with an object. At ilarly, object-oriented interfaces are likely to be clumsy
the same time, names that computers can manipulate to use in non-object-oriented languages unless the inter-
easily (e.g., 0x35fc997) are not convenient for people faces are carefully designed to work in both environ-
to work with. We need to provide both ease of use and ments. The HPDSA must establish natural ways to use
efficiency in our distributed system. distributed facilities from existing programming lan-

Similarly, we need to define the scope of these guages.
names. The scope of a name could be strictly local (e.g.,
only valid on the current machine), cluster local (only 4.6. Fault-tolerance and Correctness
valid in the current administrative domain), or global
(valid from any machine participating in the distributed The demands of command and control applications
system). Names with global scope could be absolute have required the development of systems that are capa-
names (i.e., unique throughout the distributed system) or ble of continuing execution in the presence of the failure
relative (qualified by a concept of current location within of one or more components. Distributed systems provide
the name space). The HPDSA must resolve these issues a natural layer at which to integrate fault-tolerant mecha-
to provide a coherent naming strategy for objects. nisms. Furthermore. the inclusion of fault tolerance

below the application layer permits applications to have
Can an object name specify more than one object? The some fault tolerance without any knowledge of the
name space provides a many-to-one mapping of alpha- mechanisms or policies involved in providing this facili-
numeric strings to objects. However, a one-to-many ty.
mapping of alphanumeric strings to objects might also However, when we consider integrating fault toler-
be useful. For example, one might wish to have a single ance mechanisms with parallelism and high latency
name for a service such as •u-e_sersic- and have that communication, new problems arise with regard to the
one name be a reference to any of a number of time serv- correctness and consistency of operations. In particular.
ers. Similarly, one might want to refer to a computation it may be impossible to guarantee fully consistent, si-
made up of many clients, servers, and objects by a single multaneous views of collections of data to multiple dis-
name for the purpose of starting, stopping, monitoring. tributed users of a database. without incurring significant
and debugging the computation. performance penalties. As an example of this problem.

consider the costs of doing two-phase commit transac-
4.5.Programming Model Issues tions when the round-trip latencies are greater than the

computation to be performed on the data obtained,
What is the model of computation offered to the Under these conditions, it is possible for fault tolerance
programmer? An integrated distributed system extends mechanisms to have first-order effects on computation
the programmer's model to include new collections of performance.
data and new procedures for manipulating that data. The These problems force us to confront the following
Remote Procedure Call model provides the programmer issues when addressing fault tolerance in the HPDSA en-
with access to procedures located on remote machines. vironment.
but does not permit direct access to the data located re-
motely. A virtual shared memory model provides direct How do we provide fault tolerance in a high-latency
access to remote data and does not require the program- communications environment? Many fault tolerance
mer to use specific procedures for that access. However, schemes require the use of synchronization protocols be-
implicit in this shared memory model is the assumption tween replicated servers. These protocols allow the
that the application understands the structure and mean- servers to coordinate data updates and to provide a con-
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sistent view of objects across the entire distributed sys- • A job can be executed in many different ways (e.g..
tern. However, the performance of these protocols may a job can be run on an expensive fast machine, an
deteriorate because of the lack of improvement in net- inexpensive slow machine, on several machines at
work latency compared with processor speed and net- once)
work bandwidth. Therefore. our design choices for fault * A job can be optimized across more resources
tolerance should take this relative increase in latency • A job can be optimized according to a wide range
into account. of criteria (cost, performance, network bandwidth.

total job time. etc.).
Can we provide apparent atonucity of complex opera-
tions involving many objects? Many applications require To permit effective resource management, the distribut-
complex operations to appear indivisible or atomic, even ed system must supply as much information as possible
in the presence of failures of any of the computers in- regarding the needs and status of a computation while
volved in the computation. For example, a money-trans- providing maximum flexibility in controlling that appli-
fer application for a bank might consider the withdrawal cation.
of money from one account and the deposit of that
money to another account to be an atomic operation. If How do we determine the correct dimensions of the ap-
the computer maintaining the deposit account fails in the plication to optimine (e.g., performance, security, cor-
middle of the operation. there should be no withdrawal rectness)? Distributed applications can use many types
of money from the first account, a withdrawal without a of resources to accomplish their tasks. These resources
corresponding deposit would violate the atomicity of the include CPUs. storage devices, networks, graphics de-
operation. While guaranteeing this atomicity of function vices, sensors and specialized computational elements.
is straightforward in applications running entirely on one such as vector and parallel processors. Each resource
processor. it is more difficult to guarantee atomicity in a has a multidimensional cost associated with using it.
distributed environment because there are more types of That cost may include amortization of the purchase price
failures that can occur. of the device, maintenance cost, and consumables cost.

Similarly each resource provides a multidimensional

4.7. Resource Allocation benefit to the computation. including decreased compu-
tation time, improved communication to the user. and

One of the purposes of a distributed system is to the storage of results. Therefore, providing effective dis-
permit more efficient use of an organization's resources tributed resource management implies that we attempt to

in satisfying its computational needs. For example, an maximize a multidimensional benefit while minimizing

organization might use idle cycles on its workstations at a multidimensional cost. Performing this optimization

night to run a parallel program that optimizes the work requires that we understand what dimensions are most

schedule for the next day. The organization benefits di- important to the users of the system. and implement re-

rectly from this application because it makes use of re- source management policies and priorities that reflect

sources that would otherwise be wasted. However. this that understanding.
same strategy would be a poor solution if those worksta-
tions were to be used by a night shift of programmers.
Therefore, it is desirable for organizations to have re-
source management facilities that allow flexibility and
dynamic behavior based upon observed data. While this
is not an explicit goal of the HPDSA, it is useful to con-
sider some basic issues in resource management during
its design.

flow do we optimize the use of resources for a computa-
tion? Typically, automatic forms of resource manage-
ment are done at each node by the machine's operating
system. In most time-sharing and batch systems, jobs
are scheduled according to priority and resource usage,
and one or more operators monitor the progress of the
system. In essence, the operating system is implement-
ing a resource management policy defined by the opera-
tors.

A distributed system makes resource management
more difficult for the following reasons:
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system should have the flexibility to optimize how
operations are performed without causing the behavior5. Architecture Description of those objects to change. For example, if the system
recognizes that a program and an object it manipulates

BBN has designed a high performance distributed reside on the same machine, direct access to the object's
system architecture whose mechanisms addresses the is- data can permit object operations that have performance
sues noted previously. Photon's structure is designed to similar to a simple subroutine call. However, the system
provide high-performance operation and data transfer can only permit this type of optimization if it can still
while retaining an object-oriented programming model. guarantee that the program performs the operation
Because Photon is object-oriented, it provides features correctly and that the object's integrity remains intact.
such as abstraction, encapsulation, and well-defined cli- Therefore, Photon limits the amount of information that
ent/server interfaces. At the same time, it includes ab- a program and an object are permitted to know about
stractions that support parallelism, explicit data depen- each other to that specified in a public interface
dence, data streaming and redirection, and location bind- description. This restriction provides maximum
ing to enhance performance. Finally, it provides these flexibility in the implementation of the object and
features in a modular and customizable way that permits permits Photon to select dynamically implementation
implementation on a wide variety of platforms. strategies that maximize performance.

The following sections describe the basic architec- Objects are implemented in Photon by servers.
tural mechanisms of Photon. These features address the Servers are simply programs tuiat represent one or more
following areas: objects and have a published set of operations that can

be performed on those onjects. Servers are the
• Layered object architecture mechanisms through which objects are realized in the
SKernel-less architecture system; if an object has no server, no operations can bc

Multiple layers of naming performed upon it until a server is created for it. All
SExplicit location mechanisms Photon services are provided either by servers or by

* Dynamic method binding code compiled or linked into the user's prograr,.
* Global futures Because the built-in services provided with Photon are
* Sequences also provided within the object model, new services
* Distributed shared memory added by the user are indistinguishable from those
* Language veneers pro,. -d by the system itself. Therefore. Photon can be

considered an extensible distributed system.
Each of these features will be described in more detail in Communication with objects is performed
the following subsections. according to a protocol stack, as shown in Figure 7. Our

layering model is divided into three major sections. The
5.1. Layered Object Architecture object layer is where most application programming is

done, and includes the Application layer of the OSI pro-
The fundamental building block in Photon is the ob- tocol stack. It also includes a non-OSI layer we refer to

ject. These building blocks may or may not correspond as the Model Layer. This layer is where the concept of
to objects in an object-oriented programming language. proxy objects is introduced, and permits the construction
However, they do have two important characteristics in of arbitrary application interaction protocols (see section
common with those in object-oriented languages: 5.10.3 for further descriptions of proxy objects). The

user uses object specifications, application code, and
"* Objects are instances of classes that define both the Photon tools at this level to generate these two upper

data representations and operations for manipulating layers of our protocol stack.
the data for that object. The intermediate layer of our model encompasses

"* The implementation of objects is encapsulated and the OSI Presentation and Session Layers. The code im-
hidden from programs using those objects. plementing these layers is contained in libraries which

are linked with each Photon application or service pro-
Photon extends these basic concepts to a distributed gram. These layers are tailored to the language and plat-

object environment. This means objects can reside on form on which they are used.
multiple machines in the environment and operations The instance or platform layer of Photon includes
can be requested of them by any machine. An object is the Transport, Network, Link. and Physical Layers of the
an entity to which program requests can be sent and OSI model. For hardware platforms with a native oper-
from which replies may return. Objects may or may not ating system (e.g.. workstations running UNIX), the im.
have internal state and this state may or may not be plementation of the instance layer is done in the underlv-
persistent. ing OS. This approach allows us to exploit the optimia-

Our definition of objects is very general because we tions and tuning that manufacturers perform for natvve
do not wish to limit the ways in which objects can be operating systems without having to reimplement it in
manipulated. A very high Derformance distributed
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Figure 8: Photon Kernel-less Implementation Model

grammers in the supported language. This application new object instances, we do not include the Cronus man-
program is then compiled and linked with the Photon Ih- ager abstraction. All a client program knows is how to
braries to produce an executable program for that plat- address objects and invoke proxy objects: all implemen-
form. This program uses Photon network services to tation below that level should be invisible except for de-
support execution. tails specified in the interface definition.

This development paradigm is similar to that of
Cronus. In essence, the Photon language tools process 5.2. Kernel-less Architecture
the interface specification to generate the application and
RPC/shared memory layers of the protocol. just as Cro- The Photon architecture provides a multiple-layer.
nus gerngr translates the Cronus Object Definition abstract, programming model. However. this model
Language into the target clients and servers. However. should be implemented in a way that permits these
we extend this paradigm to permit the generation of arbi- layers to be collapsed and optimized for high
trary proxy objects instead of just RPC interfaces. This performance at run time.
extension permits the inclusion of caching. replication. Our architecture assumes a kernel-less
and communication protocols that would be excluded implementation which permits communication to take
from a strict RPC model. place directly between clients and servers without the in-

Photon also differs from Cronus with regard to how volvement of any intermediary processes other than
objects are related to services. While the basic address- those inherent in the underlying operating system
able atom in Cronus is the object. objects are operated (see Figure 8). This structure eliminates context-switch-
upon by managers. Managers are processes that include ing between the Photon and application processes and
the methods for operating on one or more types of ob- substantially decreases the amount of copying of data
jects and are themselves Cronus objects. The use of and scheduling required for communication between cli-
managers permits the creation of very fine-grained ob- ent and server. It also allows the application to invoke
jects without incurring the overhead of having a process Photon functions and routines without incurring the cost
created for each object, While we found this efficiency of a system call.
argument compelling, we felt that managers were not These performance optimizations come at the cost
sufficiently abstract to be included in our model. Photon of increased process size. Each process in a distributed
attempts to completely divorce the application from application must now include within its address space all
knowledge of how an object is implemented. and we be- the code necessary to do whatever form of communica-
lieve that should include implementation details such as tion it needs. We concluded that this cost was reason-
managers. Therefore. while Photon provides a class ob- able based upon the following facts:
ject that can be addressed for the purposes of creating
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• The application and Photon code can cooperate
more closely to optimize performance.

• Because Photor, can be layered on top of an exist- Symbolic Name
ing operating system. it can make use of virtual
memory to reduce the impac, of increased applica-
tion size.

a The Photon code can be implemented as shared hi- Lookup via Name Server
braries, further reducing requirements on main
memory

0 Running the Photon code in the user's process and
at the user's privilege level preserves the integrity
of the underlying operating system's security Location-independent Name
mechanisms.

* All aspects of Photon operation are accessible and
visible during application debugging and testing.

Locate OperationWhile kernel-less implementation is not strictly required

by the Photon architecture. the performance, debugging.
and security advantages recommend its use.

5.3. Multiple Layers of Naming n-depende

Photon includes multiple levels of naming. These
include symbolic names, location-independent or logical Figure 9: Types of Photon Naming
names, and location-dependent or physical names
(see Figure 9).

Symbolic names provide methods of addressing
services that can be understood easily by people. Sym-
bolic names are usually alphanumeric strings such as 5.4.Explicit Location Mechanisms
MandelbrotComputeSer•••er. Symbolic names are con-
verted into other types of names by a name service. The Photon requires that a process know the location-
name service is implemented as a collection of servers dependent name of an object before it can perform oper-
that can be accessed by any Photon client. The function ations upon it. The location-dependent name is discov-
of these servers is very simple: given a symbolic name. ered by doing a locate operation on a location-indepen-
they return a location-independent name. dent name. This means that even when an object may be

Location-independent or Logical Object IDs replicated on many nodes, the system will select only
(LOIDs) are used to identify a service without being spe- one of these objects at the time a client does a locate op-
cific regarding its location. LOIDs are fixed-length eration. The client will continue to use that instance of
structures and are not necessarily easy to interpret other the object until there is a reason not to (such as an excep-
than by machine. However, they do provide a unique lion).
identification for a service throughout the Photon sys- The use of an explicit location operation rather than
tem and this identification can be either stored or used to a transparent, dynamic rebinding at a lower level (e.g..
access servers through the locate operation. Note that Cronus's broadcast locate) has the following advantages:
LOIDs can be resolved to more than one object or serv-
er. Protocol stacks supporting multicast addressing may * The locate operation establishes a binding between
wish to associate multicast addresses with LOIDs. the client and the server. By establishing a binding,

Location-dependent names or Physical Object IDs we provide the system with a way to reference this
(POIDs) are names that specify the physical location of particular communication path and a reference
an object in Photon with respect to the underlying com- point for exception handling.
munications network. U~e of POIDs allows the system . The locate operation allows the client to establish a
to associate an object with a communications link or location-dependent communications link to the
connection and thereby optimize the communication server. This permits optimization of the communi-
over that link. These names are bound to the underlying cations path for that object.
communications protocols the application wishes to use. • The communications needs of the application, such

as latency or bandwidth constraints, can be negoti-
ated with the servers and network layer at the time
of the locate operation. Should the underlying net-
work require reservations or the setup of a virtual
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Figure 10: Interprocess Communication Mechanisms and Their Effects

circuit, this can also be done at this time. physically shared memory and distributed computing
If a virtual circuit is used. authentication of both the environments is illustrated in Figure 10.
client and the server can take place once at the time One of the goals of the HPDSA is to promote con-
of the locate rather than on every operation on the currency while supporting data flow, demand-driven.
object. pipelined, and shared memory programming models.
The application has an opportunity to modify its Data driven models strive to reduce execution time by
behavior based upon the location and communica- initiating concurrency in response to the availability of
tion abilities of the object found. results and reducing idle time spent on synchronization.

In these approaches. execution is started in response to

The largest disadvantage of explicit location is in either regularly arriving results (pipelining). or asyn-
the area of fault-tolerance. Because we have explicitly chronously arriving results (data flow). The data source
bound the client to the server, rebinding after the failure and data processing functions may execute concurrently
of the server is not transparent; when a failure occurs. a with each other and with the communication process.
new binding must be negotiated by the client. While an theveby improving parallelism. Demand-driven
unsophisticated application may wish to be shielded approaches strive to reduce the amount of resource
from this information, a sophisticated one might wish to required to perform a distributed computation. In de-
take action based upon the failure. For example. an ap- mand-driven data flow. inputs are computed and
plication sending data to a replicated database mig' i supplied only when a processing function requests them.
wish to do more batching of its data when seeding to a In shared memory, computations execute concurrently
copy of the database over a high-latency link. and values are transmitted as required.

In general, explicit location will not be seen by the In Photon, this range of paradigms is supported by a
programmer at the object level: Photon proxy objects uniform set of communication abstractions and an object
will often be capable of performing this binding trans- oriented, functional style of programming. Shared
parently to the client programmer, However. the lower memory objects allow data values to be published to
levels of the system will use explicit location to acquire other processes (see section 5.9). Updates to these val-
location-dependent names, and therefore the advantapes ues may be data- or demand-driven, depending on how
of the technique will be available to the sophisticated ap- the methods for the object are implemented. However.
plication programmer and object designer, the application program making calls on the shared

object need not be modified. The method

5.5. Parametrized Communic3tion implementations can also be written to adapt as delay
characteristics change. Futures and sequences allow one

The relationship of Photon communication client process to combine servers to perform a
mechanisms to concurrent distributed programminIg computation. with one producing data and the other
paradigms. traditional object oriented systems and processing the values as they are generated. They allow
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Figure 11: Communications Approaches for Various Application Requirements

values to be communicated directly between the servers, needs to happen and the server specifying how it is to
without incurring additional communication or process happen. This technique can be used to optimize the com-
scheduling delays that occur with current RPC when munications path between the client and the server with-
values are passed through the client. Language veneers out requiring direct involvement by the programmer of
and proxy objects extend the current RPC notions of the client.
automatic RPC stub generation to allow programmers to Dynamic method binding is invoked as part of the
export code and data along with caching strategy and location of an object. When a client is bound to a server
other algorithms to the client, by means of its physical name. the server engages in a

There are several types of communication negotiation with the Photon support code in the client to
requirements that might be specified by an application as identify the best communication paths between the two
shown in Figure 11. The Photon architecture offers two processes. The server then instructs the client about
ways in which the choice of communication attribute\ which compiled-in Photon routines to use to achieve this
can be made. In the simpler approach, attributes can be communication. The client code stores that information
applied to individual requests. For example. a program and uses it to select the optimal code for invoking the
can mark a particular future. sequence or memory object object methods.
as unreliable or reliable, or associated with a particular This technique was introduced in Photon to permit
communication bandwidth for data streams or regular the same program to be run in both distributed and paral-
updates. lei environments without sacrificing performance in ei-

Photon servers may also offer different physical ther. Figure 14a shows the desired program structure for
object identifiers (POIDs) for a given object. each with a an application running in a distributed environment. In
different set of service properties. For example. one this case, a client and a server are on the same local area
POID might be used to support unreliable datagram network- therefore, the client uses I A area network
requests and another for establishing reliable communications routines to invoke 'r methods that
connections. Some connection POIDs might also operate on object X. However. whei ; same applica-
support bandwidth reservation, which would be marked tion is run on a shared-memory par. 21 processor, the
on the property list. program structure shown in Figure 14b is more appropri-

The association of properly lists for OlDs is a ate. Because both the client and server are executing on
promising framework for handling resource manage- the same ccmputer (albeit on different processors), they
ment. For example, we might allocate a particular can use shared memory for their communications path.
bandwidth for communication with a class of objects. This eliminates the operating system from the communi-
Property lists would indicate when this was possible, and cations path, thereby significantly improving the corn-
special POIDs would be used to reference these objects munications performance.
via the reserved communication class methods. Ideally. one would implement dynamic method

binding by having the client and server dynamic dly link
5.6. Dynamic Method Binding their communication routines at the time the object is lo-

cated. While this is an elegant and general implementa-
Photon's explicit object location and kernel-less ar- tion. the facilities to implement true dynamic linking are

chitecture permit the use of a technique called dynamic not present in many existing compilers. linkers, and op-
method binding. Dynamic method binding is a mecha- crating systems. However, true dynamic linking is not
nism through which the server can instruct the client absolutely necessary to provide dynamic methods, If we
about what routines should be used for performing assume that an application is linked with libraries for all
operations on an object it represents. This mechanism is appropriate communications methods for a given plat-
in keeping with our policy of the client specifying what form, then dynamic method binding only requires the se-
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lection of which library to use at run time (see computation, it issues an RPC. for example:
Figure 14c). This selection can easily be done by means
of a modifiable dispatch table and requires very little as- Obh ID.operat ion ( inputparamn_1 ist,
sistance from the compiler, linker, and loader. While the outputpararr_l ist
application will be larger as a result of including all the
communications libraries for a given machine, the use of In a remote procedure call without global futures.
virtual memory minimizes this impact on main memory. only the values of the input parameters would be
Those libraries that are never referenced will never be communicated to the server, and later the values of the
paged into main memory, and therefore the working set output parameters would be sent back to the client by the
of the actual running application will not be significantly server. Only then could the client supply the value
different from that of an application that was bound to received as an input parameter to another RPC call to a
only one set of libraries at link time. different server.

By using global futures, the client can cause a result
5.7. Global Futures to be forwarded directly from one server to another

without its passing through the client (see Figure 12).
Many techniques exist for allowing a single process The client does this by specifying the ID of a global fu-

to start and control several concurrently executing activi- ture in place of one or more of the input or output pa-
ties. These include multitasking. futures, and streams. rameters. When a future is supplied instead of an output
Multitasking approaches include the concept of threads parameter, it will usually specify a distribution list. The
implemented by Mach [Rashid Mach]. In multitasking distribution list directs the server to send a copy of the
systems, each iirread may be blocked waiting for a output value to each of the destination hosts in the list as
different remote request. When the request is finally soon as the value is computed. When an input parameter
satisfied, thread execution continues, guided by normal is specified as a global future, the server waits for the
scheduling policy. Futures include the approach taken value to arrive, binds the value received to the parameter
by Cronus [Walker Cronus futures]. Rather than occupied by the future, and then proceeds with the oper-
blocking RPC requests until the value is returned, the ation requested. Since future IDs are allocated by the
request returns a future which can be claimed when the client without consulting the server, a client can set up a
value is needed. A thread may have several pending flow of values from one server to another with no
futures, and may invoke requests that create more. waiting for intermediate results. As a result. the joint
Futures may be combined into a future set which can computation between the servers will complete as soon
then be used to block the thread until one of the set's as possible.
values has been received. Streams, such as those
inmplemented in Mercury [Liskov Mercury], allow a 5.7.1. The Futures Port
client to submit a sequence of requests and then claim
the replies in the same order as the requests were given, We have defined an abstraction in Photon called a
This allows client and server to execute in parallel. This port that is a unique identifier for the source or destina-
range of approaches is generally adequate for distributed tion of a future value. This is unlike the TCP protocol.
processing driven by point-to-point requests between a where a port is a host-id, port-number pair, and a
single client and many servers. connection is uniquely identified by two host-id port-id

The global future is an addition to the basic pairs. In our architecture, we have arranged that jest the
RPC/call stream model. In the global future model, a port identifier is sufficient to identify the source or desti-
caller may issue remote procedure calls to various nation of a future value. While the connection between
servers and receive the results of these calls at a later the server and the client is a simple two-way pipe with
time. The asynchrony inherent in the future mechanism data flowing between two ends. the futures port may
allows the client to issue many calls before receiving the communicate with multiple peers. Thus, given a client
results of the first: this allows computation in the server and a number of servers, there the possibility of connec-
to proceed in parallel with computation in the client tions are possible between each pair of servers, as well
since the client does not have to wait for results from as with the client and each server. Whether the actual
one call before issuing a second call. operation of these connections is datagram-like or con-

Global futures extend this capability by allowing nection-like is a function of each underlying protocol.
the client to issue calls to several servers, with output Layered above whatever protocol is used for
from a call executed by one server being transmitted transport is the Photon inter-object protocol. Protocol
directly to a second server. This forwarding of data al- data units in this protocol are called directives. When a
lows computation in the server to proceed without the Photon peer wishes to communicate with another peer. it
client being a bottleneck between them. The sends one ore more directives to that peer. An actual
computation in the servers may also proceed in parallel, connection will be established as necessary. using one of

A future is a typed value. It has a globally unique the available transport protocols. or datagrams will be
ID. When the client directs the server to perform a used in one of the available protocol stacks. Directives
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Client wishes to execute:

RPCI(A, &Resultl, Noi nput);

RPC1 Server A RPC2(B, &Result2, Resultl);

Client creates a future for A
with a destination of B

Client result of RPC1
C RfRC fI = future(A, B)

RPC1IA, fl, Noinput);
RPC2(B, &Result2, fl);

Server B
Resultant data is transferred

result of RPC2 from A to B without C's
involvement

Figure 12: Direct Forwarding of Global Futures

are used to invoke methods, provide the value of a Reference counting is suitable for a large class oi
future, delete futures, and perform a number of other distributed applications. but not for all applications. If a
functions. consumer needs to use a particular global future an

undetermined number of times, its destination reference
5.7.2. Garbage Collection of Global Futures count can not be set ahead of time in the client's RPC in-

vocation, Distribution lists also have a similar prob-
A global future must be held by the producer of a lem--the set of recipients of a future may not be known

result until it is no longer needed. We use a system of at the time of the invocation of the RPC. We handle
distributed reference counts to accomplish this. (Note: these cases with a slightly different mechanism.
the server which produces a future will sometimes be The destination reference count of an item may be
called the producer. and the various servers to which (he .set to -1. "This indicates that the result should be held for
futures are directed called consumers.) When a future is an indefinite number of claims. In this case, the client is
produced, it is held in a buffer with its reference count. responsible for knowing when the destination's copy of
This reference count is normally set to the number of the global future is no longer needed. When this condi-
destinations to which the future is to be sent. i.e. the tion is true. it sends a ck1•e-future directive to the
length of the distribution list. A copy of the future is consumer that is holding the copy of the future that it no
sent to each consumer. and as each consumer longer needs or to each consumer which has such a
acknowledges receipt of the future, the reference count copy. The delete-future directive causes the copy of
is decremented. When the reference count reaches zero. the future to be deleted regardless of its reference count.
the producer may delete its copy of the future. This type The source reference count may similarly be set to
of reference count is called a source reference count. - I to cause the copy of the future to be retained by the

There is also a destination reference count. When producer indefinitely. Once again, the client assumes
the future is produced and forwarded to its consumer, a responsibility for the deletion of the future when it is no
destination reference count is included in the message. longer needed. This is reasonable, since only the client
When the consumer receives the future. the consumers may cause the future to be sent to consumers--i.e. the
local reference count is set from this value. Each client knows when it will no longer issue any RPCs
subsequent use of this future as an input value to an RPC which will require the future as input. There are several
invocation will decrement this reference count. and reasons a client might direct a server to forward a value
when the reference count reaches zero, the copy may be well after it has been produced. even though in this case
deleted in the consumer's memory. The destination the client could send this value instead of the future.
reference count is supplied by the client as pan of the This could happen if:
distribution list. Destination reference counts are most
commonly set to one.
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Assume now that the client hears of the RPC fail-
1) the chent does not want to store the value. ure, and knows that RPCs that were in the pipe after the
2) it may be sending directives to the two streams well failure will not be executed. For items' with indefinite

ahead of execution time, or reference counts, the reference count structure
3) one or more such futures may be so large that it maintained by the library in the client's memory allows

would consume considerable bandwidth to forward Photon to go through and decrement the future list refer-
them. ence counts as if the skipped RPC's had completed.

Thus, the application can proceed. possibly issuing other
5.7.3. Keeping Track of Live Global Futures directives or RPCs to server B. knowing that extra

copies of futures will not build up in server B's memory.
Although the client's application program could be To handle errors involving items with finite refer-

made completely responsible for producing the delete ence counts, the library must also maintain a similar
future directives, the Photon library automates most of reference count structure. The difference is that a
the hard work. This is done by keeping a record of the iete- future directive does not need to be sent to the
set of ý+,ource and destination futures with their reference producer when its remote reference count goes to zero --
counts in the clients memory and by shadowing those instead the future list and copy list entries can be simply
records in the server's memories. This mechanism removed. When an RPC fails, this structure is sufficient
works as follows. to enable the library to know what futures will never be

When a future is allocated, a record is made by the consumed and issue delete- future (or decrerlen- -
library of the existence of this future in the future list. reference-counrt) directives to see that they are de-
This entry holds two reference counts: a copy of the leted. When a server fails completely (indicated by
remote refe, nce count and a local reference count set sending a RESET), resources in other servers that are
initially to 1. The entries in this list are referred to asfu- tied up can be cleaned up by the client. A server that re-
lure list entries. For simplicity, first consider an entry ceives a RESET from its client can clean up all resources
for a future whose remote reference count has been set to allocated by that client. A server that receives a RESET
-1, indicating it has been created for indefinite use. The from one of its peers can decrement the reference count
first time the future is used as an input parameter to a of futures waiting to be acknowledged by that peer.
particular consumer, a transmit- future directive is
sent to the producer, and the future list entry's reference 5.7.5. Race Conditions.
count is incremented by 1. An entry in a copy list is
made to record that a copy of this future will appear at We consider three kind of race conditions.
the destination's memory. and an entry in a RPC list is
also made to record the RPC that will consume the Race 1: A future arrives for a port which does not exist
future. As RPC completions flow back to the server. Yet
they are matched up with the appropriate RPC list entry
and will then cause the one or more copy list entries to This condition is prevented by the rule that a client
be found and have their reference counts decremented. may not construct a distribution list which contains a

When the client knows that it will not issue any destination to which it does not already have a
more RPC invocations with a particular future ID as connection.
input. it executes a release-future call. This call
decrements the local reference count of the future and Race 2: A future is needed from a port which has closed
copy list entries, but does not necessarily delete the fu-
ture list entry because the reference count may not have The various reference counting mechanisms in the
reached zero yet. When the last RPC completion client and in the servers will assure that this condition
referencing the entries also comes back, delete- future does not occur. When a client closes down a connection,
directives can be sent to the various holders of copies of the close is placed in the pipe after the last RPC to the
the future. corresponding server. The connection is not actually

closed until all RPCs and directives to that connection
5.7.4. Error Handling have been executed. So if a port is closed, it was done at

the behest of the client. In this case. a RESET will be
We must consider how to handle garbage collection returned, and the source can treat this as an

of futures in the face of errors. For example, suppose a acknowledgement.
stream of RPCs is being directed to a server B, which is
supposed to consume futures being produced by server Race 3: A consumer tries to execute an RPC for which
A. After a while, an RPC to server B fails, and some the future has not been produced yet,
RPC's which were in the pipe after the error are not
executed. As long as our client's connection to server In this case the server waits patiently for the future
B's port remains open, recovery is possible. to arrive. It could poll for the value, but if the client
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application is working properly, the value will be element of the union is present. This is effectively the
forwarded as soon as possible anyway, so there is no same concept as the record variant in Pascal. An
reason to poll. The consumer can poll with a hint if it application program is required to acess the clement of
has never before heard from the producer before in case the union specified by the tag-otherwise its behavior is
the producer has backed off retransmission to the undefined. Therefore, the tag acts as a discriminator
minimum rate. among the various member elements of the union.

To illustrate, the proposed Photon Object Descrip-
5.7.6. Handling Communication Failures tion Language (ODL) syntax for a tagged union is:

We require our connections, or association, cantype Crec: union,
between client and server to be maintained indefinitely, tag: integer a,
By this we mean that connection halves do not go away choices are
just because communication has apparently halted. In- 1: integer i,
stead, retransmission is backed off to a slow rate, but 2: B-type b,
state is retained. A connection is considered broken only 3: C type c
when a RESET is received from the other end indicating end;
that the connection at the other end really does not exist.

The case labels (1, 2. and 3 in the above) must be
5.7.7. Forwarding a Global Future to a Second Level values of the same type as the tag. Note also that the tag

Consumer. is a labeled element of the union which can be
referenced by its identifier.

Suppose a piece of server code (in server B, say) The sequence mechanism is used to transmit a
which was supposed to be a consumer of a future wanted pipeline (or queue) of values between two processes or
to treat a future like a data item, and pass it on to another threads in Photon. A sequence of any data type can be
server D. The client would not be able to reference defined and used. like a futilre, as an argument to a
count this future properly. One solution is for the server method. Sequence types may be used as argurents to
B to form its own future, which would forward the data methods but are not first class data types baaune they
value to D as soon as it arrived at B. A second solution may not be used as fields of other data types. The value
is for B to send a tra,:;,,-future command to the of a sequence of T is an ordered set of values of
source of the future. It can do this provided it has not type T. The sequence is constructed by put operations.
acknowledged receipt of the future; once it and accessed by get and next operations. The get
acknowledges the future, A may no longer have a copy. operation returns the current element. The next opera-
Server B would also have to delay reporting completion tion advances the sequence past the current element so
of the RPC in question until it knew of the completion of that the get operation will then return the next element
the RPC on D which was going to consume the future. in the sequence. The sequence may also be terminated.
If B has received the future, it can forward the value at which point the get operation will indicate that all
instead. The disadvantage of this latter method is that the elements have been read.
the client no longer knows exactly what is going on.
Instead, the forwarder. B. must take on responsibility for
cleaning up any downstream communication errors.

Photon borrows and extends the distributed
5.8. Sequences memory model of Munin [Bennett Munin]. In this

model, locations in a global memory space, called mem-
In Photon, the user sees no explicit concept of a ory objects, are globally addressable, variable size seg-

network connection. Instead a client program can invoke ments that have a memor ' ytpe. The type of a memory
operations specifying that the output ofon operation is object corresponds to the caching strategy used for
to become the input to another. Inputs and outyuts from it-including the algorithm that controls distribution and
operations are typed. and Photon's type system includes invalidation of updates. The caching strategies vary
features that effectively provide a connection as a data based on how consistently and reliably memory is
type. maintained, and how classes of reference are matched to

Photon's type system allows the same set of the characteristics of multiprocessor, local, and wide
canonical types to be defined asrCronasedwith two area network access. Photon memory objects are
extensions. The two extensionsare the tagged union and effectively light weight objects that may be used to
the sequence constructor. These two extensions work accomplish shared-memory-style distributed program-
together to handle the case of a large flow of data ming below the level of RPC and may serve as the
between twa processes or threads executing in parallel, underpinning for the other Photon objects.

A tagged unon is a structure that contains a tag and Formally. a Photon memory object is a tuple of the
a union. with the values of the tag specifying which following form:
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be used to invoke any capabihty of the Photon global
memory system.

<mnory-ID, memory-type, rremory-type-arnfc, A Photon memory object must be created before it
menory-object-state, representation-type, is used. This is done by specifying a piece of the
representation-value> memory of an active process containing a local

representation of the memory object's initial contents.
and a memory-ID is a tuple of the following form: When this operation is performed. the caller must supply

a pointer in its virtual address space to the copy of the
<producing-hos:, ccn:zro.iing-hor, object. an indication of the Photon memory type. an
unique-numrber, sequence-number> indication of the representation type. and possibly other

parameters. Under the mapping style of interface. this
In some cases, depending on the memory type. memory area would become the mapped image of the
producing-host and contraolling-host may be the same. or actual Photon memory object. Under the ce-- -.pý _. style
only one of the two may be used. of memory object interface, the area would only supply

A memory object carries a representation value the initial contents of the memory object -i.e. creating a
which may be written, read, mapped, and modified but memory object is like creating it with undefined contents
which does not in any way interact with its memory and immediately thereafter issuing a put call to set its
type. It also carries some state associated with its type contents.
(e.g., locks, "dirty" flags. etc), and may carry other de-
scriptive information specifically related to its memory 5.9.2. Read.Write Semantics.
type. A Photon memory object carries a representation
type that is distinct from its memory type. The A Photon memory object may be mapped into the
representation type dtu,-'nes how the contents of the rep- virtual memory space of a process. provided it knows the
resentation value are mapped into the data memory ID of the object. Once mapped, the value of the
representations of various machine architectures. This object may be read at the mapped range of location..
roughly corresponds to the data structuring capabilities The process may or may not modify the object (write the
of the Presentation Layer in ISO/OSI. In adding the locations), and modifications may or may not be seen by
representation type to the memory type, Photon goes other processes mapping the object. depending on the
beyond the Munin memory model. In the Photon ODL memory object type and type of mapping operation
one may define types and metatypes. Types are Presen- performed.
tation Layer types described above. A metatype
corresponds to a representation type paired with a 5.9.3. Memory types and Caching
memory type.

A memory object is one kind of Photon object. Copies of a Photon memory object may be located
However, a memory object may or may not be made in more than one Photon host machine. The copies are
available for general access. A memory object may be considered to be in the local cache of the Photon
used to hold the representation of another Photon object memory system. This would occur if processes in
(which is not a memory object), and in this case. only different machines mapped the item simultaneously.
the higher level Photon object would have direct access When this occurs, the processes must obey some
to the memory object which holds its representation. A discipline in referencing and updating the object, just as
Photon object may also use other means to hold its would be the case if several processes mapped a piece of
representation if the designer so wishes. An example shared memory in a multiprocessor. A typical discipline
would be a Photon file object, which would store its is that only one process will modify the data at a time.
contents in disk storage rather than main memory. and the processes mediate the right to modify the shared

area by acquiring a lock. Another common situation is
5.9.1. Addressing of Photon memory objects. that one process always writes the data, and all others

only read it. The various Mumn memory types were
A Photon memory object is addressed by its memo- chosen to match the actual patterns of access exhibited

ry ID. A memory ID maps directly to a Photon OID, so by shared memory progi ams. Each Munin memory type
that the set of Photon memory IDs is a subset of the set obeys a different cache update strategy suitable for its
of Photon OIDS. A program or executing an operation usage pattern. Photon includes Munin's set of cache
upon an object may, theoretically, map a Photon algorithms, and extends it by making it an extendible
memory object into or out of its virtual address space. In set-in particular, various data replication strategies, for
practice, the ability to map Photon memory objects may example, version voting in Cronus, are modeled as cache
be unavailable or limited due to nature of the local update strategies.
operating sylm's. virtual memory system. However, a
non-mapping style of interface to the interface using get
and put operations is always available and can always
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5.9.4. Synchronization described the use made of the memory type above. The
representation type makes it possible fair a memory

Synchronization between copies of a memory object to be shared between systems with differing
object is a function of the memory type. The producer- machine architectures-i.e. different word sizes.
consumer memory type knows that a value is only different floating point formats. etc. When a copy of a
written by the creator and then subsequently read by location is sent to a peer memory system in an update. if
various consumers. Thus no special effort is required to the peer is not of the same architecture, the contents of
keep copies ;ientical-i.e.. synchronized. However. the object is convened to a machine independent
since computations will proceed faster if values are representation which is placed in the message sent to the
forwarded in advance of their being needed, and copies peer. The receiving peer converts the machine
need to be deleted when they have been consumed, the independent representation to initialize or update the
producer-consumer type uses a system of distribution contents of its copy of the memory object. When
lists and reference counts to implement a policy that practical, Photon peers may negotiate away the use of
assures that values rendezvous with consumers and are the machine independent representation. This permits
deleted as soon as possible. This rendezvous process, of the substitution of native representations if the peers arc
course, constitutes a form of synchronization between on machines of cormpatible architecture, or inexpensixc
processes. At the RPC level, rendezvous with a representations thit both machines are capable of
producer-consumer value in the memory system is called producing and parsing, if such exist. Photon makes no
claiming a future. use of the local representation of the memory object. but

Other memory types use different algorithms for makes it available to the application level,
synchronization of values in different caches. For those
memory types modeled on cache coherency algorithms. 5.9.7. Access Control
there is nothing new here. Replication memory types
use their distinctive algorithms to effect reliable Some sort of access control clearly belongs in the
replication of memory objects. memory level of the Photon design. We propose no new

Photon will initially use the version voting method concepts in the access control area. If access control is
of Cronus as its reliable memory method. Other types incorporated at the memory level, it would be an
will be able to be implemented in the Photon library, and independent property of a memory object--"ornhogonal'"
users will be able to extend the set of memory' types by to memory type and representation type. Access control
defining memory type servers, could also be incorporated into the object level-i.e. in

heavyweight objects& by inheritance from one of a
5.9.5. Locking number of defined objects which in turn inherit from a

general access control object base class. At present this
In Munin. a special class of memory objects is the is an open issue in the Photon design. The simplest

lock class. Whereas all other types of memory objects approach would to adopt the access control scheme from
are accessed with , or let, p:, locks are Cronus and insert it into the memory level of the archi-
accessed with Icok and -rniz:zk primitives. This is tecture. This corresponds to the latter scheme mentioned
because the algorithms for obtaining and releasing locks above.
are similar to those for obtaining, updating and
invalidating copies of memory objects. Secondly. given 5.10. Language Veneers
sufficient hints, the memory system can optimize the
propagation of updates by noticing where locks are held Photon is designed to support languages such as C.
and when they are released. For example. if the Photon C++, and Ada directly with libraries of support routines.
memory subsystem knows that a set of memory objects definition files, macro, class, or generic definitions,
are locked by a particular lock, then it can defer preprocessors if appropriate, and tools to gencrate
broadcasting updates from system holding the lock while libraries, header files, and other code for Photon classes
the objects are updated, instead of sending updates when defined in the Photon Object Definition Language. Pho-
the lock is released. For simpler cases, the memory ion may support other lao-guages. Access to Photon fa-
object will be able to serve as its own lock. Thus. a set cilities can be provided to any language, although there
of simple locking operations will be defined as memory may be practical reasons for not doing so.
access methods that apply to any memory type-unless In this section. we describe our design for Photon's
the memory type specifically overrides the method, support for the C++ laniguage. We emphasize C++, be-
making it invalid, cause it is well matched to the object oriented concepts

of Photon, and it allows us to explore distributed
5.9.6. Representation type programming in a more modern context than the C

language. Because C++ provides sufficient definition
A Photon memory object carries both a memory facilities, macros and specialized preprocessing are not

type and a data or representation type. We have necessary. In effect (at least for our purposes), C++ is
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an extensible language. Photon objects are mapped into structure in each supported target language. In Photon.
C++ objects that are either actual implementations of the this translation can happen both dynamically and
objects or proxy objects that send messages to the statically. The static translation occurs when the fan-
Photon class or object server requesting that the guage-specific description file is produced from the
corresponding method be performed on the actual object. object descriptor. Effectively. the Photon object

Photon's language support for the C language gen- description is translated into a description of the object
erally follows the model used by Cronus. Structures are in the target language. The translation would occur
defined to represent objects, and routines are defined to dynamically when the representation was passed
operate on those structures, but the C language is is not between two servers for the same class which were
extended. written in different languages--or between two client

programs which operate directly on the objects.
5.10.1. Photon Object Definition Language Photon uses an extension of the Cronus abstract

data space. Cronus and Photon use their abstract data
Photon provides the Photon Object Definition spaces in the representation clause of the ODL, and in

Language (ODL) which may be used to define classes, defining the type of parameters to methods. One
Classes are implemented in programs which act servers extension to the abstract data space is the tagged union.
for objects of the class, and are accessed by programs. Other basic types and structuring concepts are identical.
known as clients. A program may be both a client and a In C and C++, a tagged union is mapped into a structure
server, even for the same type of object. containing a tag and a union. The tag is mapped

The Photon Object Description Language is an according to its type. and the elements of the union are
extension of the Cronus object description language. It each mapped separate according to their individual
is deliberately unlike C. PL/1. ADA, etc. in an effort to types.
be language neutral -- that is, equally appealing to users Metatypes are also mapped. In C++, the metatypes
of various languages. ODL defines cantypes which are can be mapped directly. using templates. The metatype
units of structured data that may be accessed or passed sequence is mapped by the Seqrence<-:.a: tern-
through Photon. It also defines classes, and for each plate, and the metatype future is mapped by the •-
class, the methods and parameters that may be applied to - - .>template. Either of these templates may
a member of the class. Any parameter to a method may be used for any type T whether or not T is defined within
be a cantype, and the state of an object may be ODL or simply defined in the local program, provided a
represented by a cantype. If a cantype - is defined. program is operating within the Photon environment.
Photon automatically defines Fut.Lre<T> and Such a metatype could only be used inside a single pro-
Sequence<T> -- these are sometimes called metatypes. gram. However, distributed programming through

The designer of a Photon application designs con- Photon requires that the base type of the metatype be a
more classes by writing class descriptions in the Photon cantvpe declared in ODL.
Object Description Language. A file containing this de- in our work on Photon. we have prototyped

scription is processed by the Photon Description templates by using macros since the version of the C++
Language processor. It may be processed only for compiler we are using does not yet implement templates.
syntax checking, or to create and/or register a class However, templates are standardized in the C++
descriptor (assuming it finds no errors). A class language and due to appear soon in most C++
descriptor is itself a Photon object. Once a class implementations. The latest version of cfront. a C++ to
descriptor exists, the processor may also be used to C translator from AT&T. includes the template feature.
produce language specific description files for inclusion The macro approach suffers from some clumsiness and
in programs which reference objects of the class is difficult to debug.
described. These files contain declarations of routines.
structures, classes, templates, and possibly macros. 5.10.3. Proxy Objects
depending on the target language and on the class itself.
At the present time, the Photon Object Description One of the key elements in our object-oriented Ian-
processor is the only language preprocessing we expect guage veneer is that of pro.ti" objects. Proxy objects are
to use in Photon. class definitions that represent remote objects within a

client program. These class definitions are created by
5.10.2. Mapping ODL Into Objects In the Target Lan- the class designer to work cooperatively with servers of

guage. that object class. Proxy objects permit the class designer
to implement arbitrary caching and consistency policies

The class description is mapped into declarations in between clients and servers. Figure 13 shows a schemat-
the target language. An object has a state, which is held ic representation of how proxy objects can be used for
in a cantype declared in the representation clause of the communication between client and a server.
description. The cantype is a structure in an abstract Remote procedure calls are simply a special case of
data space, but it can be translated directly into a data proxy objects. RPC stubs generated from an ODL are
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Figure 13: A Schematic Representation of Proxy Objects

merely proxy objects that send a message to the server for consistency and caching without burdening the user
for each operation requested upon an object. However. with this complexity. We believe that proper use of
it is not difficult to visualize object definitions where proxy objects substantially increases the flexibility of
these trivial proxy objects cause unneeded communica- Photon language veneers and opens up new opportuni-
tion. For example. imagine that there exists a class I I ties to improve the performance of distributed applica-
that has operations define_color and read_cc: :-. A tions in high-latency environments.
client might contain code such as the following:

5.10.4. Description of C++ Implementation of
cctt C :Futures.
bali b;

A future is an object that will return a value when
b. f ...e.C 1Cre•u claimed by a program. The value is typed -- in Photon,
... the future itself may be statically typed according to the
c = b. readacocort ; type of the value it will return. or may be untyped (i.e.

dynamically typed.) The difference between a variable
Using an RPC proxy object. these two operations would of a type and a future of that type is that the future may
require two separate messages to be sent to the : or may not contain a value at any particular time, and
server, and two replies to be received. However, a more contains state information indicating whether it does or
intelligent proxy object might simply notify the t3 - does not contain the value. A variable of a type always
server that it was maintaining a cache of b'S object at- contains a value, even if it is uninitialized, and it would
tributes and cache the color of the ball in a local state not make sense to use this value.
variable. Then when the readcolr operation was re- willWhen a program claims the value of the future, it
variabe.st he n the localproxyoject couldorey o erat wih will receive the value immediately if the value is already
quested, the local proxy object could reply red without available, or it it will wait until the value is available.
any further communication with the server. This must make sense for the program to be use-

Proxy objects raise many of the same issues that ful-some other active part of the program, or some
memory objects do. They must define protocols for con- other program. must be prepared to supply the value.
sistency and caching that are appropriate for the objects The future is clearly an inter-process communication
they represent. However, we can resolve these issues by facility. In Photon. we provide facilities that allow a
applying the same techniques that we used to implement program to create a future that may then be used to pass
shared memory objects. Furthermore, because proxy ob- a value between two other programs which may be on
jects are specifically generated to cooperate with their different machines. This allows a program to direct a
servers, we can instantiate arbitrarily complex protocols
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distributed computation without being an intermediary 5.10.5. Photon Objects and Methods.
for data exchange. It also eliminates needless delays for
messages passing through the network that would occur Since Photon is object-oriented, one usually refers
if the program was the intermediary-improving the to an object, not directly to a program. Of course,
performance of the distributed computation. whenever a method is executed on some particular

machine, there must be a process or inread to execute
Example: that method. For the duration of its execution, a method

invocation is equivalent to a thread. The following ODL
In C++. a Future is an object, declared as statements:

Future<type>, a template defined by the Photon defini-
tion files. The value type of a future may be any data type Randon.
type. A declaration like the following:

abbrev is Rani
F'uture<int> f;

representation is state: float;
declares an object f which is an int-retuming future.
This object may be supplied by use of an assignment operation cet -(
statement re:urns (reslt: fboat,;

f 5; enJ type Rand.or;

or claimed by something like: :vseAu- a

int i; i = f; c y "if(f)', etc. arev is Acc'or
rezrecentatlcn is"1a5 • "zt

If a program containing the first declaration of i
above executes the first statement in one thread and the operation add(inou : fle-

second in a different thread. the second thread will wait s :t:
until the value is available from the first thread and then
receive the value supplied by the other thread, In Photon. En:: tYpe Accumulator;
these threads may be in the same program or in different
programs, and on the same machine or in different defines two Photon classes. ar.:v :. and A=:::w a o-_r.

machines. If the get method is invoked on a ý.andon, object. a float
An untyped future may also be declared as follows: of random value is returned.

This definition is translated into the following C++
Future untyp; class definition.

An untyped future may be supplied using Supply (typop claSs Random
or claimed using Claim (type). For example:

integer i; o sta'o;
untyp.Suppy' 111i;
untyp.Claim(i); // useful if in some tloat getu;

// other thread3

When the claim method is executed, the thread class Accumulator

executing the Claim will wait until a supply is executed -

on the same future. It will then receive this value, P ivate:
provided that its argument is of sufficient size and of float value;
compatible type with the value dynamically bound to the public:
future. float add(fboat)j;

Untyped futures are particularly useful for transit
futures when no use is made value of the future, or of its These statements would be obtained by running theThese intmet the inokn obtindgyrrnnng.h
type in the invoking program. Photon class too! with suitable arguments. and storing

the output in one or more files named after the classes
they define. These normally would then be included by
programs that make uses of these Photon classes.
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In C++, the following program: Photon abstract data type, but is a type defined by the
language support for C++. The method function

#include 'Random.,' declaration generated by the ODL processor will contain
#include 'Accumulator.FH Future<type> in the appropriate parameter positions if

"Future type " was declared in the ODL definition of
mainO the method. Photon takes appropriate action to handle

each of the 8 distinct cases resulting from the
Random r("hostA'); combination of input or output parameter, formal future
Accumulator a("hostB"); or non-future parameter, actual future or non-future
float f = r.get(); parameter.
a.add(f)-; When a formal parameter is not a future, the value

is transported either before or after execution of the
method, depending on whether it is an input or output

first locates a Random object, initializing a proxy object parameter. When the formal of an input parameter is a
r to refer to it, then locates an Accumulator object. call- future, execution of a method is initiated immediately.
ing its proxy a. It then invokes the get method on r, re- whether the value of the future is available or not. The
ceiving a float value which it stores in variable f. Fi- method will block when (or if) it tries to claim this
nally, this value is added to object a's total by invoking value. When the formal of an output parameter is a

the Accumulator class method add. future, the value is transported to its destination as soon
as it becomes available during the execution of the

5.10.6. Setup Facilities method.

An important use of Futures in Photon results from
the ability to use a future to specify a flow of data
between the methods of two objects. Any formal
parameter of a method may have an actual which is
either of the type it specifies. or a future of that type.
When the same future is specified as an output
parameter to one method invocation and as an input
parameter to another method invocation. Photon
arranges that the value that the first method supplies to
the future (as the output parameter) is supplied as the
input parameter to the other method invocation.
Continuing to use the Random and Accumulator classes
from the previous example. we can construct the follow-
ing program:

main) (
Random r
Accumulator a('hcst-',
Future<itnt> f;
f = r.get();
a.add(f); }

This program does the same thing as the one in the
previous example, but variable f is a Future<.ni -i.e.
a future returning an i.-. In this program, the value of
the future is neither produced or consumed by main. and
so, it does not need to pass through the local computer.
Instead, the value passes directly from hostA to h::.

5.10.7. Example of Future Parameters

In the Photon Object Definition Language. a
parameter of any method may be declared to be of any
declared type in the abstract type space defined by
Photon, or a Future of that type. A future is not itself a
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1low do we provide contmunications to manvN ob let'ts at
once? Logical Object identifiers (LOIDs) provide a

6. Issues revisited mechanism for referring to multiple instances of objects
at once. We have designed this facility largely to permit

The previous section descriNbed the key technologies replication of objects for fault-tolerance. However.
being incorporated in Photon to provide high perfor- LOIDs can also be resolved into multicast physical iden-
mance in what we believe (o be the computational envi- tifiers where the underlying communication substrate
ronment of the 1990s and beyond. In this section. we re- permits this type of communication This mapping per-
visit the issues we raised as the result of our sample ap- mits the addressing of multiple physical objects in one
plication analysis and examine how Photon has ad- operation. This use of multicasting is most appropriate
dressed them. Those areas that have not been addressed when the application is performing one-way communi-
have been noted as areas for further research. cation or when custom proxy objects are being used that

can coordinate responses from multiple objects: other-
6.1. Communlcatlons wise. ihere is the opportunity to confuse the application

with multiple replies to one request.
How do we deal with increased communications laten-

cy? We have incorporated sequences and global futures Itow do conmunimcations abstractions interact with the
within Photon to accommodate increased communica- object-oriented programming model" The programmer
tions latency. By using futures to pipeline requests and at the object level in Photon interacts with the communi-
replies, we can cause many operations to one server to cations abstraction largely through the use of parame-
be executed in only one round-trip communications trized location of objects and through the use of global
time. We can further use futures to cause data to floa futures. Objects can he located by attribute through the
directly from the producer of data to consumers of that use of a Photon location broker. Global futures then per-
data, thereby further reducing latency effects. mit the application to specify the data flow between ob-

jects independently of the control flow of the program.
How do we model scheduled versus unscheduled com- Both of these mechanisms can be encapsulated cleanly
munications (e.g., connection-hased models versus data- into an object's definition through the use of language
gram models)? Photon can use both connection-oriented veneers.
and non-connection-oriented communications models
for its communications substrate. Because of its layered 6.2. Computation
architecture. most Photon mechanisms operate indepen-
dently of the underlying physical communications lay- Ion do e express parallelism in a distributed appica-

ers. Where special communications features are re- tton' Logical parallelism is expressed in the application
quired by applications, objects can be bound selectively through the use of the future abstraction. Futures allow
according to specific communication parameters such as the programmer to define parallelism within the applica-
reliable transport or fixed latency. The application has tion while simultaneously establishing a point of syn-
this flexibility because of Photon's explicit location of chronization for the results of that parallelism. Futures
objects. allow the programmer to express opportunities for paral-

lelism without necessarily requiring parallel resources
What communications semantics do we guarantee (e.g.. to he allocated.
at-most-once delivery versus at-least-once delivern o)r
best effort delivery)? Photon typically provides se- Row do we bind our parallelism abstractions to '¢'!
quenced, reliable data streams as its normal, high-band- (onlutaatonal etements to maximize the performance of
width communications mechanism. However, applica- the computation? While futures define opportunities for
tions can specify their communications needs at the time parallelism, it is up to the resource management policies
of object location to permit the use of less expensive of the system to define what actual resources will be
communications methods. Furthermore, proxy objects used to achieve this parallelism. Photon does not at-
permit partitioning of object methods to guarantee appli- tempt to restrict the policies that might be used to ac-
cation-specific consistency requirements regardless of complish this resource allocation. These policies are
the intervening communications layer. defined by how the objects being invoked are imple-

mented by servers and how the application locates these
flow does the user specify the communication needs of objects. Futures permit us to understand how much in-
the application? The user specifies the communications ter-object parallelism the application can use and still ex-
needs of the application through additional parameters ecute correctly. Nonetheless, even more parallelism
passed to the locate operation. These parameters tell the may be used within an object method provided that it
system what aspects (e.g.. cost. bandwidth, latency) of does not violate any of its ODL specifications: therefore.
the communications path to optimize. futures simply provide us with a lower bound on the

amount of parallelism that might be used.
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cal names that it can resolve to. A physical name by
How do our computational abstractions synchroni:e definition specifies only one object
with one another? All object invocations return a result
that can be used for synchronization. Synchronous oper- 6.5. Programming Model Issues
ations are accomplished by having the application imme-
diately claim this synchronization result. Asynchronous What is the model of computation offered to the pro-
operations allow the client to continue executing until grammer? The fundamental model of computation used
the result of the operation is needed. Futures involve in Photon is an object-oriented model. In this model, the
storing or passing this synchronization result to other cli- fundamental addressable atom throughout the system is
ents or servers, the object, All operations upon objects are performed by

methods whose interfaces are publicly defined, These

6.3. Binding methods are gathered together into servers that act a,,
computational representatives for internally stored oh-

Hlow do we create bindings between clients and servers jects. In some implementations, portions of methods
Clients can create bindings to servers by locating physi- may be incorporated int, a client application by means

cal object identifiers (POIDs) for objects they wish to of proxy objects.
perform operations on. These POIDs contain all infor-
mation required to communicate with the object. POIDs tlow is this computation model integrated into the pro-

are usually obtained from an object location broker or granuning language? The object-oriented model imple-

name server. mented by Photon is integrated into programming lan-
guages through language veneers. The language veneer

At what time are these bindings created? A client is is a set of support routines. definitions, macros, and pre-
bound to a server when a locate operation is performed processors (if necessary) to support Photon concepts

on a logical object ID (LOID) or when an initial opera- within that language in the most natural form possible.
tion is done on a POID. Both of these functions are usu- In the case of extensible languages such as C++. this ve-
ally performed when the object name is resolved and the neer can be done almost entirely through libraries and
object is imported into the application, class definitions.

ttow long do these bindings last? Bindings are either 6.6. Fault tolerance and Correctness
explicitly destroyed when an application terminates or
are timed out after a period of inactivity. In either case. Hlow do we provide fault tolerance in a high-latency
a new locate operation will have to be performed before communications environneentt This is an area for fur-
any new operations can be sent from that client to that ther research. Photon supplies basic mechanisms for
server, replicated objects through its use of proxies and logical

object addresses, However, it does not yet define repli-

6.4. Naming cation techniques or policies that attempt to provide gen-
eral fault-tolerance. We have speculated that in high-la-

tlow do we name objects and services? Services and oh- tency communications environments, primary copy
jects can have three types of names: symbolic names. schemes will often be more efficient than arbitrary reph-
logical names (LOIDs), and physical names (POIDs). cation protocols. This efficiency occurs because locking

and synchronization among records can be done entirely

flow do we map descriptive requirements (names, prop- within the primary copy without reference to any other
erties, keywords) to servers? Just as symbolic names servers. While updates must still be propagated to sec-
can be mapped to logical names by a name server. de- ondary servers before they can be considered complete.
scriptive requirements can be similarly mapped through the reduced need for synchronization decreases the num-
use of a location broker. In both cases. a logical name ber of round-trips required between copies of the server.
for a service is returned by a lookup in a database: the and therefore will provide higher-performance operation.
name server database is indexed by symbolic name, and In the case of failure of the primary copy, a new
the property server database is indexed by attribute. primary is elected by the remaining servers for that ser-

vice. Because this voting process need only be done on
What format and scope does an object name have? failure of a primary server (rather than on the failure of
Symbolic names are alphanumeric strings, and LOIDs any server in quorum schemes or on every operation in
and POIDs are fixed-length structures. All names have version voting), primary copy schemes result in fewer
system-wide scope. changes in service due to failure.

Can an object name specift more than one object? A Can we provide apparent atonucity of complex opera.
symbolic name can specify only one object. a logical or tions involving many objects? We have not yet ad-
physical name. A logical name can specify many physi- dressed how to achieve atomicity of execution for opera-
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tions involving many objects. Transactions provide a
powerful means of guaranteeing atomicity of such oper-
ations, but transactions also impose significant costs on
the programs using them. For example, every operation
that can be part of a transaction must have a way of roll-
ing back its state at any point until a cormit, is done.
Furthermore, transactions require multiple round-trips
over the communications path to specify both the opera-
tion invocations and the commits required to post them.
We will continue to look into ways in which we can pro-
vide atomicity of multiple operations with high perfor-
mance and low cost.

6.7. Resource Allocation

How do we optimi:e the use of resources for a computt-
lon? How do we derernzine the correct dimension of the
application to optimi:e (e.g., peiforniance, securit", cor-
rectness)? Our architecture does not presently attempt to
dictate how resources are optimized. Instead. Photon
provides facilities such as dynamic method binding and
proxy objects that allow processes to control their re-
source use according to its needs. These mechanisms
can be be manipulated by interactive processes to
achieve performance optimization on a local scale.
However, global optimization of resource use and gener-
al-purpose implementation of resource management pol-
icies are beyond the scope of this project and are best ad-
dressed through the use of cooperating Photon servers.
each providing local resource management. Photon will
provide interfaces for administrators to attach servers
that implement desired resource management policy.
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7.2. Mercury and Argus

7. Comparisons with Related Work Mercury is a distributed operting system dvel-
oped at MIT [Liskov Mercury]. Argus is both a pro-

Photon incorporates concepts from a wide variety gramming language and a distributed system built on top
of other systems. In this section. we compare and con- of Mercury primitives [Liskov Argus]. Both systems
trast the mechanisms in Photon with those provided by were developed under funding from the Defense Ad-
other state-of-the-art systems. vanced Research Projects Agency and the National Sci-

ence Foundation.
7.1. Cronus The Mercury and Argus systems contributed the

concepts of call streams and data flow communications
Cronus is a distributed programming environment using RPC constructs to the Photon architecture. Argus

designed to work on a wide v riety of heterogeneous op- also supports promises (essentially strongly typed fu-
erating systems and platforms [Schantz Cronus]iVinier tures used for streaming and thread synchronization), the
Cronus]. It was developed at BBN under funding from use of transactions for atomicity. language veneers, and
the Rome Laboratory of the United States Air Force. clearly defined exception-handling semantics.

Cronus provided the model for many of the mecha- Argus has significant capabilities in the area of fault
nisms in the object layer. We were particularly influ- tolerance. In particular. it supports atontic transactions
enced by Cronus's ability to provide an object-oriented or actions. Actions are simply operations that are guar-
programming environment on top of a wide variety of anteed to complete atomically or to not happen at all. re-
non-object-oriented operating systems and computer ar- gardless of failures. Therefore. Argus programs are able
chitectures. Photon incorporates several specific Cronus to guarantee the correctness of the data they control de-
concepts such as location-independent object identifiers, spite arbitrary failures in the distributed system. This ca-
futures, and direct connections ith little or no change. pability in conjunction with primary-copy replicated

Tne layering model in Photon was inspired by the services results in extremely good tolerance for system
Cronus philosophy of running on top of a native operat- and component failure.
ing system. Photon extended that philosophy to incorpo- Attractive though it is. we have not adopted atomic
rate the concept of a process-to-instance mapping for re- transactions for Photon. larely due to uncertainty re-
source management. Nonetheless, an existing native op- garding their cost in high.latency environments. On one
erating system will make an excellent instance layer for hand. transactions allow the buffering of many op.
Photon and should substantially decrease the cost ot im- crations into one entity, which should improve commu-
plementation. nications throughput. However, the need for two-phase

Our principal differences with Cronus come from protocols to commit operations imposes a need for at
our interest in being able to bind clients to servers for the least two round-trips in addition to those required for the
purpose of high-performance communications. Cronus original operations. Therelore. we have left the use of
uses a purely location-independent model of addressing transactions in Photon as an open question for further
objects. where Photon uses both location-independent consideration.
and location-dependent names for objects. Photon's
ability to associate an object with a communications path 7.3. Alpha
permits the use of streaming for communication. thereby
increasing communications performance and decreasing Alpha is an adaptable decentralized operating sys-
the effects of latency. Cronus assumes that all opera- tem for real-time applications [Jensen Alpha]. It was
tions on an object are independent of one another. and initially developed at Carnegie-Mellon University. and
this makes it difficult to do streaming without consider- later versions are being developed at Concurrent Corn-
ably more mechanism. puter Corporation under funding from the Rome Labora-

Cronus has a well-defined quorum-voting scheme tory of the United States Air Force.
for achieving fault tolerance by means of replicated sert - Alpha is specifically optimized for integration and
ers. While Photon could implement a similar ftacilit.y optimization of large, complex. distributed real-time sys-
we believe that the synchronization costs of replicated tems. Alpha provides the concept of threads that are
servers will be much high than those inherent in primary scheduled according to time-value functions that dictate
copy schemes. Therefore, Photon's fault-tolerance ar- their priority over time. These threads can migrate from
chitecture will rely less on version-voting methods. host to host in a distributed system and carry with them
Nonetheless, we have found the Cronus concept of auto- their scheduling policies, access rights, and resource
matically generating fault-tolerant servers according to a management requirements. Alpha. like Argus, provides
specification to be quite important to users, and we will transactions to ensure atomicity of function, however,
provide similar techniques in our system. Alpha's transaction mechanisms are integrated with the

scheduling policies of the system to guarantee satisfac.
lion of real-time constraints,
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Alpha's decoupling of scheduling policy from
mechanism is similar in spirit to Photon's decoupling of
the communications mechanisms from the programming
model. Our concept in Photon is that the programmer is
free to construct processes and abstract objects without
regard for where or how they will be instantiated at run
time. When the actual application is run, the instantia-
tion and location of those objects arid processes is dictat-
ed by user-defined resource management policies en-
forced by the system. Photon extends this concept by
optimizing the communications path also at this time
through dynamic method binding.

While Photon is optimized for high performance. it
is not specifically targeted at solving real-time distribut-
ed applications as Alpha is. Therefore, the tradeoffs
made in Photon are directed more toward flexibility.
scalability, and ease of use than toward real-time needs.
We believe this emphasis is justified due to the increas-
ing ability of organizations to dedicate hardware to solv-
ing real-time problems and the continuing requirement
for systems that are easy to use and understand.

7.4. Amoeba

Amoeba is a distributed system developed at the
Vrije Universiteit (VU) in Amsterdam, the Netherlands
by Prof. Andrew Tanenbaum [Tanenbaum Amoeba].

Amoeba is particularly interesting for this project
because it is a distributed system designed specifically to
work with parallel processors. Amoeba provides a cli-
ent/.rervea architecture using a microkemnel. Processors
are considered to be well-connected nodes in the distrib-
uted system and are allocated dynamically to users,
Amoeba's communication is based upon a very-high-
performance remote procedure call. Objects are refer-
enced by means of capabilities, which are cryptographi-
cally protected, location-dependent names. Naming of
objects is provided through a directory server.

Photon's use of location-dependent names for high
performance is similar to that of Amoeba's use of capa-
bilities. However, Photon provides location-independent
names also to permit transparent replication of services.
Amoeba's capabilities also dictate access rights to a
srver, whereas Photon will use authentication. tickets.
and access control lists such as in Cronus to exercise ac-
cess control.

Amoeba achieves much of its high communication
performance through the use of tightly coded kernel rou-
tines and minimal services. The Amoeba kernel runs di-
rectly on the hardware and does not provide features
such as paging or swapping. Photon takes a somewhat
different lack because it is designed to accommodate a
resident operating system at the instance layer. There-
fore, Photon provides high-level mechanisms such as
global futures to achieve high throughput and uses im-
plementation techniques such as dynamic method bind-
ing to reduce layering costs and data copying.
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8. Photon Demonstrations

During this project. we developed a series of demonstra-
tion programs to illustrate the fundamental mechanisms that
make up Photon. The Photon Concept Demo software is de-
signed to illustrate some of the basic Photon features in sim-
plified form. The demonstration software uses a kernel-less.
client-server model, in which the programs making up each
demonstration are run as unprivileged, user processes. The
Photon functionality needed is built into a library that is
linked into each program. This software is supplied in both
source and binary form for the Sun 3 and Sun 4 platforms.
This same demonstration software has also been compiled
and run on Apollo DNIOOOO parallel processors.

The demonstration software shows some of the mecha-
nisms critical to high performance in Photon. These include
the following concepts:

* synchronous and asynchronous Remote Procedure Calls
(RPCs)

* stream and non-stream RPCs, and global futures. These
capabilities are built on top of the native operating svs-
tem's TCP socket interface

* demonstratable versions of our globally-claimable
futures mechanism that show third-party translers.
pipelining. and sequences

* a prototype Photon support library in C
* a simple name server to locate Photon sernices
* a simple prototype of the C++ language veneer.

These concepts are encapsulated into clients and servers tha1
can be used to demonstrate the following functions:

* Name server (nameserver, phis)
• Synchronous Echoing (echoc1:,en t _! -,

echoserver)
* Pipelined Echoing (echo_client-1 -je 5

echoserver)
* Third-party Data Transfer (echo-cl ient-Z)
* Sequences (seq send, seqrecv)
* Mandelbrot Parallel Computation (mandel_client,

mandel_server)
* Echoing using a C++ Photon veneer (Echo2,

Echo2b, Echo3, ftyped)

For complete details regarding the demonstration software.
please refer to the Photon Software User's Manual. BBN Re-
port #7709.

-37-



and to start it running. Combining this with an approach
to grouping nodes and applications, and a'si•gning a cla"v9. Areas for Further Research ol applications to a class of nodes would provide a focus

tor designing segmented processor resource alloc-ation
In this project. we developed a collection of key strategies.

concepts that form the foundations for a latency-inde- Finally. we helieve that interoperation wiih other
pendent, high performance distributed environment, distributed systems and languages will become increas-
These concepts were: tngly important as our research proceeds. Large invest-

ments have already been made in distributed systems
* Object architectures such as Cronus and Alpha. As more organizations de-
* Global futures ploy local and wide area networks to meet their commu-
* Sequences nications needs, more applications will become available
* Distributed shared memory for integration into our distributed environment. If we
• Explicit location mechanisms can preserve the investments that have been made in pre-
* Language veneers vious distributed systems while integratig the concepts

we have developed in Photon. we should then be able to
While these concepts form a consistent architecture for substantially reduce the development time for new appli-
achieving the goals of this project. they need further ex- cations of distributed system technology. Reduced de-
amination and extension in the context of requirements velopmeni time permits greater responsiveness to users
for fault-tolerance and resource management. We be- and can reduce overall system costs.
lieve that work in the following areas would be benefi-
cial:

* More complete designs of the core communication
elements, such as futures. sequences. and shared
memory objects.

* Process abstractions including threads and schedul-
ing

* Designs of key services, such as location broker.
name server, and type management, to support
reconfiguration. resource management. symbolh,
naming. and application development. These
services must be designed to augment Photon, while
allowing continued operation of Photon
communication when they fail.

* More attention to reliability, including reliable, at-
most-once delivery of requests and object
replication

* Approaches for allocating. sharing, and restricting
use of resources such as processor time and
memory. communication bandwidth and transport
connections

We believe the last two points are particularly im-
portant in C2 environments. For Photon to develop into
a survivable and robust system, we need to develop tech-
niques for error detection and recovery, and we need to
prove that these structures are sufficient to support sys-
tem operation in the presence of network partitions and
component failures. We believe that modern techniques
for software fault tolerance, distributed database integri-
ty, reliable transaction transport, and multiprocessor
shared memory synchronization would all be appropriate
candidates for enhancing the robustness of Photon.

In the area of resource management, Photon cur-
rently does not define how servers are propagated to new
hosts. We could define a new element of the architec-
ture to locate code for a particular application compo-
nent. to transmit the code to an idle computational node,
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10. Summary

In this paper, we have described the issues and so-
lution mechanisms involved in the design of a high-per-
formance distributed system architecture. We have ex-
amined both the characteristics of next-generation com-
munications systems and the requirements of simple C`
distributed applications. We have designed a basic ar-
chitecture and mechanisms for a distributed system
called Photon that is capable of meeting the needs of
these applications in high-performance environmenti.
While this is only the first step in the development of
high performance distributed systems, we believe that
the concepts described here can make substantial contri-
butions to next-generation architectures. By performing
this work now, we have prepared the way for software
architectures capable of exploiting the vast potential in
fiber-optic communications and scalable distributed
computation. We believe that systems like these will
provide the technology to serve the needs of C- users
well into the next decade and beyond.
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